
10

Table II. EQ and NE thermodynamic potentials.

Ensemble Micro-canonical Canonical NE micro-canonical Meta-canonical
Potential s = �

P
x

p

x

ln p

x

' = � ln hexp (��1e[z])ik L(j, f, p) �(a, b, m)
Variational principle max min max max
Free variables �1 e a, b, m j, f , p

Constrained variables e �1 j, f , p a, b, m

Physical system subspace — — m(j, f, p) = c

�
a(j, f, p), b(j, f, p)

�
m = c(a, b)

No dilatation space — — b(j, f, p) = 2a(j, f, p) b = 2a

Legendre structure s + ' = �1e L + � = a

† · j + b

† · f + m

† · p

in practice [? ], even though this problem is not specific
to NE ensembles (see for instance page 83 of Ref. [3] for
an example in EQ thermodynamic theory). If we assume
that an energy current can be imposed from the out-
side, the activities and the occupations must take pre-
cise values so that the system can sustain the energy
current. On the opposite, the conjugated intensive vari-
ables become free to fluctuate. The relationship between
currents, activities and occupations is obtained from the
correspondence between the conjugated variables (j, f, p)
and (a, b, m), as summarized in Table II. The NE micro-
canonical potential is the LDF L(j, f, p) and the statistics
of the intensive variables (a, b, m) follows from its partial
derivative
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⌫

, (66)

@L
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����
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⌫

, (67)
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x

����
j,f,prx

= m

x

. (68)

We proved in sections II and III C the equivalence of
the ensembles of trajectories generated by the NE process
and the conditioned EQ reference process assuming that
the NE potentials are convex. Accordingly, the meta-
canonical ensemble and NE micro-canonical ensembles
are ensemble equivalent. In other words, systems sub-
mitted to temperature gradients are equivalent, at the
thermodynamic level, to systems subjected to stationary
energy injection (and extraction). By construction, the
NE potentials are conjugated by Legendre transforma-
tion

L(j, f, p) + �(a, b, m) = a

† · j + b

† · f + m

† · p, (69)

and the NE stationary state can be obtained from a vari-
ational approach. If we consider a

† · j + b

† · f + m

† · p �
�(a, b, m) as the potential L that would be obtained from
Eq. (69) by assuming the independence of the conjugated
variables, then the NESS a�nity, dynamical bias and es-
cape weight reached by the system at constant imposed
energy current j, activity f , and occupation p maximize
this potential in the subspace of constant (j, f, p):

(a, b, m) = argmax
a,b,m|j,f,p

⇥
a

† · j + b

† · f + m

† · p � �(a, b, m)
⇤

(70)

which are exactly Eqs. (63-65). The same argument holds
the other way around. If we consider a

† ·j+b

† ·f +m

† ·p�
L(j, f, p) as the potential � that would be obtained from
Eq. (69) assuming the independence of the conjugated
variables, then the NESS energy currents, activities and
occupations reached by the system at constant imposed
a�nity a, dynamical bias b, and escape weight m maxi-
mize this potential in the subspace of constant (a, b, m):

(j, f, p) = argmax
j,f,p|a,b,m

⇥
a

† · j + b

† · f + m

† · p � L(j, f, p)
⇤

(71)
which are exactly Eqs. (66-68).

B. Symmetries of the NE potentials

The metacanonical potential is even under the sign
change of all a�nities. We prove in Appendix D that this
symmetry leads to the fluctuation theorem (FT), a fun-
damental result regarding the asymptotic statistics of en-
tropy production first studied in Refs. [52–54]. Another
fundamental symmetry is obtained from the equality of
second derivatives of the NE potentials. This symmetry
is the NE equivalent of the Maxwell relations and reads
as
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(72)

where h and h

0 are two vectors in (a, b, m) and similarly
v and v

0 in (j, f, p). The subscripts ↵ and ↵

0 indicate two
arbitrary components of these vectors. At EQ, Maxwell’s
relations deeply constrain the number of EQ response
coe�cients that should be introduced to completely de-
scribe a system. Here, they constrain the derivatives
of the non-linear functions giving, for instance, the cur-
rents in terms of the a�nities. In the close-to-EQ limit,
Eq. (72) implies that the linear response matrix is sym-
metric, or in other words it implies the Onsager reci-
procity relations [55, 56], as we will see in the next sec-
tion.

C. NE linear response theory

We study the linear response of a system in an arbi-
trary NESS and further perturbed by a change of tem-


