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Abstract The efficiency statistics of a small thermodynamic machine has been recently
investigated assuming that the total dissipation is a linear combination of two currents: the
input and output currents. Here, we relax this standard assumption and consider the question of
the efficiency fluctuations for a machine involving three different processes, first in full generality
and secondly for two different examples. Since the third process may not be measurable and/or
may decrease the machine efficiency, our motivation is to study the effect of unknown losses in
small machines.
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I. INTRODUCTION

Machines use a spontaneous current to generate an-
other one flowing against a conjugate thermodynamic
force. Most machines operate at the macroscopic scale,
i.e., in the thermodynamic limit, and for this reason are
modeled by deterministic equations. However it is pos-
sible nowadays to build micro-scale machines that are
strongly influenced by thermal fluctuations. Hence these
micro-scale machines are modeled by probabilistic equa-
tions, e.g. master equation or Fokker-Planck equation [1–
3]. In this context, small machine are ruled by the laws
of stochastic thermodynamics [4–7]: All the thermody-
namic quantities like heat, work or entropy production
become random variables [8–11]. More precisely, they
become functionals of the random trajectory of states
visited by the machine [6].

Stochastic thermodynamics improves the weakly ir-
reversible thermodynamics in two ways [12–14]: It de-
scribes systems that are both arbitrarily irreversible and
stochastic. In the last two decades, this theory has per-
mitted to revisit the first and second laws of thermody-
namics. While the first law essentially states the con-
servation of energy along a unique trajectory followed
by the system, the second law arises from the fluctua-
tion theorem, i.e., a symmetry of the probability distri-
bution of the entropy production [15–19]. This theorem
ensures that the mean entropy production is positive.
Since entropy production is a linear combination of the
physical currents, the fluctuation theorem also affects the
probability distribution of currents [20] and, in this way,
constrains the properties of small thermodynamic ma-
chines [21–23].

Using the fluctuation theorem, the shape of the prob-
ability distribution of the stochastic efficiency of a small
machine, defined as the ratio of the stochastic output
and input currents, has been predicted recently [24–29].
For instance, it was shown that the probability distribu-
tion of efficiency displays fat tails leading to a diverging
first moment of the efficiency [27, 30]. Furthermore, the
macroscopic efficiency given by the ratio of the mean cur-
rents is the most probable efficiency. On the opposite, for
stationary machines or machines operating under time-
symmetric driving, the reversible efficiency is the least
likely, i.e. it corresponds to a local minimum of the effi-
ciency probability distribution on a range that increases
with the observation time of the input and output fluxes.

Interestingly, some of these features have been ob-
served experimentally by Martinez et al for a Carnot
engine at the colloidal scale [31]. In that work, the mea-
surement of every currents turns out to be relatively com-
plex at the fluctuating level. In regards of the difficulty
of measuring all the energy currents in real thermody-
namic nano-devices, our aim in this paper is to extend
the theory of efficiency fluctuations to include the pos-
sibility of multiple input or output currents. To do so,
we introduce a third energy current to model extra fu-
eling or losses. The ratio of this third current over the

input current defines a loss factor if the associated mean
entropy production is negative. We notice that this ra-
tio could also be named an efficiency and the machine
would have several purpose in this case [32]. In the end,
the question of studying efficiency fluctuations for a ma-
chine with losses comes down to determine the statistics
of the two efficiencies that on can construct with the three
processes.

On this basis, after a short thermodynamic description
of a machine involving three processes in Sec. II, we use
the large deviation theory to characterize the long time
statistics of the pair of stochastic efficiencies of the ma-
chine in Sec. III. The aforementioned results for machines
with only two processes are recovered and extended in
this section. In Sec. IV, we consider the case where the
third process exists but is ignored in the theoretical de-
scription of the machine. Our main result is that the
statistics of the remaining efficiency has the same struc-
ture as the one predicted for a machine with only two
processes. For stationary machines or machines operat-
ing under time-symmetric driving, a central difference is
that the least likely efficiency is translated with respect
to the reversible efficiency. It corresponds to the most re-
versible efficiency that is achievable considering that the
third process evolves typically. We illustrate our results
on two solvable models in Sec. V, first on a machine with
a Gaussian statistics for the entropy productions (an as-
sumption generically satisfied in the close-to-equilibrium
limit), second on a photo-electric device made of two sin-
gle level quantum dots [33, 34].

II. THERMODYNAMICS OF AN ENGINE
WITH THREE PROCESSES

We consider the generic case of a machine described by
three thermodynamic forces A1, A2, and A3, and three
time-integrated currents J1, J2, and J3. We define the
currents as positive when flowing toward the machine.
The stochastic entropy production along a trajectory of
duration t is Σ = Σ1 +Σ2 +Σ3 +∆S, with Σi = JiAi the
stochastic entropy production of process i = 1, 2, 3. The
stochastic entropy change of the machine itself is ∆S.
We consider only small machines with finite state space
for which the entropy change is negligible with respect to
the entropy productions over a long time t. In this case,
the total entropy production rate is given by

σ =
Σ

t
= σ1 + σ2 + σ3, (1)

with σi = Σi/t the entropy production rate associated
with process i = 1, 2, 3. The mean value of a stochastic
variable is denoted by brackets 〈. . . 〉 and corresponds to
averaging over all the trajectories.

In general, a device operating as a machine (on aver-
age) uses a fueling process (the input) flowing in the di-
rection of its corresponding forces and therefore 〈σ1〉 > 0
(e.g., heat flowing down a temperature gradient) in order
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to power a second process (the output) flowing against
the direction of its corresponding forces 〈σ2〉 < 0 (e.g., a
particle flowing up a chemical potential gradient). Our
third process will either flow spontaneously 〈σ3〉 > 0, and
the machine will have two input processes, or in the op-
posite direction 〈σ3〉 < 0, and the machine will have two
output processes. We define the stochastic efficiencies η1,
η2, and η3 by

η1 = −σ1

σ1
= −1, η2 = −σ2

σ1
and η3 = −σ3

σ1
, (2)

where η1 has been introduced by convention. The di-
mensionless ηi are “type II” efficiencies. The “type I”
efficiencies involve the ratio of the currents and are easily
recovered from the “type II” efficiencies using the ther-
modynamic forces [35]. The most probable values of η2

and η3 converge in the long time limit to the macroscopic
values η̄2 and η̄3 defined by

η̄2 = −〈σ2〉
〈σ1〉

and η̄3 = −〈σ3〉
〈σ1〉

, (3)

which are the conventional thermodynamic efficiencies.
Since the second law imposes 〈σ〉 > 0, we have the fol-
lowing constraint on the macroscopic efficiencies

η̄2 + η̄3 6 1, (4)

that is reminiscent of the Carnot Bound for machines
with two processes and a unique efficiency. We remark
here that the third process may model losses since it de-
creases the upper bound of the efficiency η̄2 ≤ 1− η̄3.

III. EFFICIENCY STATISTICS OF A MACHINE
WITH THREE PROCESSES: GENERAL

APPROACH

Below, we study the fluctuations of the efficiencies
(η2, η3) considering that the statistics of all the entropy
productions (σ1, σ2, σ3) is accessible.

A. Definition of the large deviation function of the
efficiencies

The large deviation theory provides a formal frame-
work to describe the probability distribution of time in-
tegrated observables in the long-time limit [36, 37]. It
allows to characterize quantitatively the exponential con-
vergence of a probability distributions toward a Dirac
delta distribution centered on the mean value of the ran-
dom variable studied. This rate of convergence of the
probability is called a large deviation function (LDF) or
a rate function. We denote by Pt(σ1, σ2, σ3) the proba-
bility to get the entropy production rates σ1, σ2, σ3 after
a time t. Assuming that a large deviation principle holds,
this probability is asymptotically given at large time by

Pt(σ1, σ2, σ3) � exp {−tI(σ1, σ2, σ3)}. (5)

By construction, the LDF I(σ1, σ2, σ3) is non-negative
and assumed to be convex. Its minimum value zero is
reached at the point (〈σ1〉 , 〈σ2〉 , 〈σ3〉). Following [25],
we obtain the LDF of the efficiencies from the LDF of
the entropy productions. The probability at time t to
observe efficiencies η2 and η3 is given by

Pt(η2, η3) =

∫
dσ1dσ2dσ3Pt(σ1, σ2, σ3)

× δ
(
η2 +

σ2

σ1

)
δ

(
η3 +

σ3

σ1

)
. (6)

Using Eq. (5) in Eq. (6) and the saddle point method to
compute the integral, we find for large time

Pt(η2, η3) � exp {−tJ(η2, η3)}, (7)

where

J(η2, η3) = min
σ1

I(σ1,−η2σ1,−η3σ1)}. (8)

From this, we deduce that J is a non-negative and
bounded function, with for all η2, η3

0 6 J(η2, η3) 6 I(0, 0, 0), (9)

The efficiency LDF also follows from the cumulant gen-
erating function (CGF)

φ(γ1, γ2, γ3) =
t→∞

1

t
ln
〈
et(γ1σ1+γ2σ2+γ3σ3)

〉
, (10)

of the entropy productions [25]. Indeed, when I is convex,
φ and I are conjugated by Legendre transform

I(σ1, σ2, σ3) = max
γ1,γ2,γ3

{ 3∑
i=1

γiσi − φ(γ1, γ2, γ3)
}
. (11)

From this duality, we prove in appendix (A) that

J(η2, η3) = − min
γ2,γ3

{
φ(γ2η2 + γ3η3, γ2, γ3)

}
. (12)

This formula is of particular interest since CGF are more
convenient to compute in practice.

B. Extrema of the LDF

In this section we look for the specific features of the
various extrema of the efficiency LDF J . We first show
that the location of the maxima follows from a linear
constraint on the efficiencies, second that J has a unique
global minimum, and third that no other extremum exists
at finite values of the efficiency. All these features are
illustrated in Sec. V B on two specific models.
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1. Maximum of the efficiency LDF

We look for the location of the maxima of J . Since
we have J(η2, η3) 6 I(0, 0, 0), if there exists at least one
couple (η∗2 , η

∗
3) satisfying

J(η∗2 , η
∗
3) = I(0, 0, 0), (13)

then (η∗2 , η
∗
3) is the position of a maximum. We show

in appendix B that, in fact, an ensemble of efficiencies
verifies Eq. (13). This ensemble is a straight line in the
efficiency plane and is given by

η∗2
∂I

∂σ2

∣∣∣∣
0

(
∂I

∂σ1

∣∣∣∣
0

)−1

+ η∗3
∂I

∂σ3

∣∣∣∣
0

(
∂I

∂σ1

∣∣∣∣
0

)−1

= 1, (14)

where the subscript 0 indicates evaluation in the origin.
More specifically, in the case of a machine operating at
steady state or subject to time-symmetric driving cy-
cles, we retrieve thanks to the fluctuation theorem that
∂I/∂σi|0 = −1/2, yielding

η∗2 + η∗3 = 1. (15)

From Eq. (4) we see that the efficiencies satisfying
Eq. (15) correspond to efficiencies obtained along the re-
versible trajectories (even though the system is out of
equilibrium). The unique reversible efficiency of an en-
gine with two processes is replaced, for an engine with
three processes, by a couple of reversible efficiencies,
one of arbitrary value and the other one following from
Eq. (14).

2. Global minimum of the efficiency LDF

Assuming the convexity and no constant region, I has
a unique minimum at (〈σ1〉 , 〈σ2〉 , 〈σ3〉). The efficiency
LDF J vanishes at the macroscopic efficiencies (η̄2, η̄3)
given by Eq. (3),

J(η̄2, η̄3) = min
σ1

I

(
σ1, σ1

〈σ2〉
〈σ1〉

, σ1
〈σ3〉
〈σ1〉

)
= 0, (16)

where the minimum is reached for σ1 = 〈σ1〉. Since J is
a non-negative function, (η̄2, η̄3) is a global minimum.

If I has a constant region, due to its convexity, it is
necessarily a region around (〈σ1〉 , 〈σ2〉 , 〈σ3〉) where the
LDF of entropy production vanishes. In this case, the
minimum of J is not unique, but is a domain including
(η̄2, η̄3).

3. Asymptotic behavior of the efficiency LDF

Let us now verify that J has no other extremum than
(η̄2, η̄3) and (η∗2 , η

∗
3). To do so, we look for the zeros of

the partial derivatives of J with respect to η2 and η3,

∂J

∂η2
(η2, η3) = 0 and

∂J

∂η3
(η2, η3) = 0. (17)

Since J follows from a minimization on σ1, see Eq. (8),
we introduce the function σ̃1(η2, η3) as the solution of

0 =
d

dσ̃1
[I(σ̃1,−η2σ̃1,−η3σ̃1)] =

∂I

∂σ1
− η2

∂I

∂σ2
− η3

∂I

∂σ3
,

(18)
with all partial derivatives evaluated in
(σ̃1,−η2σ̃1,−η3σ̃1). This allows to write the efficiency
LDF as

J(η2, η3) = I(σ̃1(η2, η3),−η2σ̃1(η2, η3),−η3σ̃1(η2, η3)).
(19)

From this equation, the partial derivative of J may be
written as

∂J

∂η2
(η2, η3) =

∂σ̃1

∂η2

∂I

∂σ1
−
(
η2
∂σ̃1

∂η2
+ σ̃1

)
∂I

∂σ2
−η3

∂σ̃1

∂η2

∂I

∂σ3
,

(20)
where partial derivatives are still taken at
(σ̃1,−η2σ̃1,−η3σ̃1), with σ̃1 = σ̃1(η2, η3). From
Eqs. (18) and (20), it is possible to rewrite Eq. (17) as

σ̃1
∂I

∂σ2
(σ̃1,−η2σ̃1,−η3σ̃1) = 0, (21)

σ̃1
∂I

∂σ3
(σ̃1,−η2σ̃1,−η3σ̃1) = 0. (22)

We distinguish now two different cases: first, the par-
tial derivatives of I may vanish and we recover the min-
imum of J studied in Sec. III B 2; secondly, the func-
tion σ̃1(η2, η3) vanishes. In the latter case, we look for
(η̃2, η̃3) such that σ̃1(η̃2, η̃3) = 0. In this view, we evalu-
ate Eq.(19) at (η̃2, η̃3) yielding, if η̃2 and η̃3 are finite,

J(η̃2, η̃3) = I(0, 0, 0), (23)

such that we retrieve the extrema (η̃2, η̃3) ∈ (η∗2 , η
∗
3) of

Sec. III B 1. Alternatively, if one of the efficiencies, for
instance η2, is infinite, Eq. (19) becomes

lim
η2→±∞

J(η2, η3)

= lim
η2→±∞

I (σ̃1(η2, η3),−η2σ̃1(η2, η3),−η3σ̃1(η2, η3))

6 I(0, 0, 0). (24)

From the last inequality and the convexity of I we con-
clude that η2σ̃1(η2, η3) stays finite when η2 → ±∞, and
necessarily

lim
η2→±∞

σ̃1(η2, η3) = 0. (25)

The derivative of J vanishes at infinite efficiencies and
the efficiency LDF converges to a finite value at large
efficiencies since J is bounded. Moreover the limit

lim
η2→±∞

η2σ̃1(η2, η3) is a constant independent of η3, it fol-

lows that the limit lim
η2→±∞

J(η2, η3) is also independent of

η3, if η3 remains finite. The same arguments hold when
taking the limit η3 → ±∞ keeping η2 finite. In the end,
we have recovered all the extrema at finite values of the
efficiencies and shown that the two partial derivatives of
J vanish at large efficiencies.
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IV. EFFICIENCY STATISTICS OF A MACHINE
WITH THREE PROCESSES: FORGETTING THE

THIRD PROCESS

We now study the fluctuations of the efficiency η2 with-
out taking into account the statistics on the third pro-
cess. This may correspond to an experimental set-up for
which the third current exists, but cannot be measured.
In this case, we consider that η3 or equivalently σ3 take
their typical values given that the efficiency η2 achieves a
given value: this leads to contracting the LDF J(η2, η3).
We analyze in this section the general shape of the con-
tracted LDF and study its extrema.

The contracted LDF is by definition

Jct(η2) = min
η3

J(η2, η3) = min
σ1

Ict(σ1,−η2σ1), (26)

with

Ict(σ1, σ2) = min
η3

I(σ1, σ2,−η3σ1) = min
σ3

I(σ1, σ2, σ3).

(27)
As in the previous case, cf. Appendix (A), we can express
the contracted efficiency LDF in terms of the CGF:

Jct(η2) = −min
γ2

φ(γ2η2, γ2, 0). (28)

We now determine some properties of this contracted
LDF. From (26), we have

∀η2, 0 6 Jct(η2) 6 Ict(0, 0), (29)

so Jct is a non-negative, bounded function. In particular,
we are interested in the extrema of Jct.

First, looking for the minimum, we have

Jct(η̄2) 6 J(η̄2, η̄3) = 0, (30)

so, due to the positivity of Jct, the efficiency η̄2 is a global
minimum of Jct, and corresponds to the macroscopic ef-
ficiency.

Second, we look for the maximum of Jct(η2). We call
η∗2,ct the efficiency such that Jct(η

∗
2,ct) = Ict(0, 0), and,

reasoning as Appendix (B), we have

η∗2,ct =

(
∂Ict

∂σ1

∣∣∣∣
0

)(
∂Ict

∂σ2

∣∣∣∣
0

)−1

, (31)

Since Ict follows from the minimization of Eq. (27) over
σ3, we introduce σ̃3(σ1, σ2) the solution of this minimiza-
tion, yielding,

Ict(σ1, σ2) = I(σ1, σ2, σ̃3(σ1, σ2)). (32)

And next, we find

∂Ict

∂σ2

∣∣∣∣
0

=
∂I

∂σ2
(0, 0, σ̃3(0, 0)), (33)

∂Ict

∂σ1

∣∣∣∣
0

=
∂I

∂σ1
(0, 0, σ̃3(0, 0)). (34)

After contraction on σ3, Eq. (31) yields the least likely
efficiency

η∗2,ct =

(
∂I

∂σ1
(0, 0, σ̃3(0, 0))

)(
∂I

∂σ2
(0, 0, σ̃3(0, 0))

)−1

.

(35)

In this equation we see that the least likely efficiency is
achieved when processes 1 and 2 evolve reversibly while
the third process evolves typically (with the condition
that the first two processes are reversible). In other
words, at the least likely efficiency, the system chooses
the most probable trajectories compatible with the re-
versibility of the first two processes. Since in the general
case Ict will not satisfy a fluctuation theorem, we have
no constraint on the location of the maximum of Jct(η2).
If σ̃3(0, 0) is small, a Taylor expansion of Eq. (35) around
(0, 0, 0) shows that the maximum is slightly moved away
from η∗2 given by Eq. (14) taken at η∗3 = 0. But for
arbitrary value of σ̃3(0, 0), the maximum of Jct can be
anywhere, even below η̄2. This does not contradict the
second law of thermodynamics since the third process
(that is ignored here) may fuel the machine as much as
waste its power.

Finally, we verify the absence of another extremum of
Jct at finite efficiency. To do so, we seek as earlier the
zeros of the derivative of Jct

dJct

dη2
= 0. (36)

To find an expression for this derivative, we introduce
the function σ̃′1(η2) realizing the minimum in Eq. (26),
such that

Jct(η2) = Ict(σ̃
′
1(η2),−η2σ̃

′
1(η2))

= I(σ̃′1(η2),−η2σ̃
′
1(η2),−σ̃3(σ̃′1(η2),−η2σ̃

′
1(η2))).

(37)

The total derivative of Jct(η2) yields

dJct

dη2
(η2) = −σ̃′1(η2)

∂I

∂σ2
. (38)

With arguments similar to those of Sec. III B 3, the above
derivative vanishes only at the previously obtained ex-
trema and for infinite values of efficiency. Since Jct is
bounded, it converges to finite values when η2 → ±∞.

Therefore, Jct has the typical shape of the efficiency
LDF for two external processes [25] but with a displaced
maximum. An example is provided in Fig. (4).

V. APPLICATIONS

A. Close-to-equilibrium machine

Close to equilibrium, the cumulant generating function
of entropy productions is generically a quadratic function

φ(γ1, γ2, γ3) =

3∑
i,j=1

Ci,jγiγj +

3∑
i=1

γi 〈σi〉 , (39)



5

with Ci,j the asymptotic covariances of the entropy pro-
ductions defined by

Ci,j = lim
t→∞

〈Σi(t)Σj(t)〉 − 〈Σi(t)〉 〈Σj(t)〉
t

. (40)

From Eqs. (12) and (39) we calculate the efficiency LDF

J(η2, η3)

=

3∑
i,j=2

(〈σi〉+ ηi 〈σ1〉)M5−i,5−j (〈σj〉+ ηj 〈σ1〉)∑
s,s′

ε(s)ε(s′)ηs(1)ηs′(1)Cs(2),s′(2)Cs(3),s′(3)

(41)

where s denote a permutation of three elements and ε(s)
its parity and

Mi,j = (−1)i+j (Ci,j + C1,iη̄j + C1,j η̄i + C1,1η̄iη̄j) (42)

for i, j = 2, 3. We can also rewrite J(η2, η3) in a form
that is convenient for generalization

J(η2, η3)

=

∑
s,s′

ε(s)ε(s′)ηs(1)ηs′(1)Cs(2),s′(2)

〈
σs(3)

〉 〈
σs′(3)

〉
∑
s,s′

ε(s)ε(s′)ηs(1)ηs′(1)Cs(2),s′(2)Cs(3),s′(3)

. (43)

As in ref. [25], the close to equilibrium efficiency LDF is
the ratio of two quadratic forms. It vanishes as expected
at the macroscopic efficiencies (η̄2, η̄3). A comparison
between the close-to-equilibrium case and a general cal-
culation on efficiency LDF is provided in Sec. V B for a
specific model.

Furthermore, from linear response theory, the mean
entropy production rates are connected to the asymptotic
covariances of entropy production as follows

〈σi〉 =
1

2

3∑
j=1

Ci,j (44)

Then, Eq. (43) may be rewritten using only the coeffi-
cient Ci,j

J(η2, η3)

=

∑
s,s′

3∑
i,j=1

ε(s)ε(s′)ηs(1)ηs′(1)Cs(2),s′(2)Ci,s(3)Cj,s′(3)

2
∑
s,s′

ε(s)ε(s′)ηs(1)ηs′(1)Cs(2),s′(2)Cs(3),s′(3)

.

(45)

Since the asymptotic covariances are proportional to
the response coefficient of the machine, the close-to-
equilibrium efficiency LDF is completely known from the
response property of the machine.

From this LDF for the two efficiencies we now explicitly
compute Jct. After the contraction on the efficiency η3,

Engine

Left

lead

Right

lead

Phonon bath

Black-body 

radiation

Black-body 

radiation

FIG. 1. Sketch of the studied photoelectric device. The device
consists of two single-level quantum dots (in white) connected
to two leads (in blue) at temperature Tc and at different chem-
ical potentials µr and µl. The electron transitions between
left and right quantum dots are induced either by photons
from black-body radiation at temperature Th(in red) or Tm

(in orange), or by phonons at temperature Tc(in blue). The
arrows indicate possible electronic transitions between differ-
ent energy levels and the Γ’s represent the coupling strengths
with the reservoirs.

we retrieve the functional form of the efficiency LDF for
a machine with two processes [25],

Jct(η2) =
1

2

(η2 〈σ1〉+ 〈σ2〉)2

(η2)2C1,1 + 2η2C1,2 + C2,2
, (46)

keeping in mind that we have now 〈σi〉 =
∑3
j=1 Ci,j/2

and not 〈σi〉 =
∑2
j=1 Ci,j/2 as in Ref. [25]. The maxi-

mum is no longer at η2 = 1 but at η2 = η∗2,ct, with

η∗2,ct =
C2,2C1,1 + C1,3C2,2 − C2

1,2 − C1,2C2,3

C2,2C1,1 + C2,3C1,1 − C2
1,2 − C1,2C1,3

. (47)

As expected, when C1,3 and C2,3 vanish, η∗2,ct = 1: when
the third process decouples from the others, we retrieve
the least likely efficiency of a machine with only two pro-
cesses.

B. Photo-electric device

We now illustrate the results of the previous sections
on a model of a photo-electric device first studied in
Ref. [33, 34]. The device is composed of two quantum
dots each with a single energy level El and Er (Er > El),
cf. Fig. 1. It is powered by two black-body sources at
temperature Th and Tm, and a cold heat reservoir at
temperature Tc. Each dot can exchange electrons with
an electronic lead at temperature Tc, the left (right) dot
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being connected to the left (right) lead. Each lead is at a
different voltage and is modeled by an electron reservoir
at chemical potential µr > µl. The three different states
of the machine are indexed by j = 0, l, r, correspond-
ing respectively to no electron in the device, one electron
in the left quantum dot, and one in the right dot. The
three different heat reservoirs are labeled by ν = c, m, h.
We introduce the rates kij as the probability per unit
time to jump from state j to i. With the Fermi-Dirac
distribution f(x) = 1/(expx + 1) and the Bose-Einstein
distribution b(x) = 1/(expx− 1), these rates are written

k0l =Γl f(
El − µl
Tc

), kl0 = Γl

(
1− f(

El − µl
Tc

)

)
,

k0r =Γr f(
Er − µr
Tc

), kr0 = Γr

(
1− f(

Er − µr
Tc

)

)
,

kνrl =Γν b(
Er − El
Tν

), kνlr = Γν

(
1 + b(

Er − El
Tν

)

)
.

(48)

The total rate for the left to right transition is krl =∑
ν k

ν
rl and similarly for the right to left transition. The

Γ’s are the different coupling strengths with the reser-
voirs, see Fig. (1). The machine displays various op-
erating modes according to the parameter values as il-
lustrated in Fig. (2). We consider only the heat engine
case: other operating modes follow from relabeling the
various processes. Per unit time, the machine receives
a heat qν = nν∆E from the heat reservoir ν, where nν
is the net rate of photons (or phonons) absorbed from
this reservoir and ∆E = Er − El. Similarly, the work

delivered by the machine is −w = ne∆µ, where ne is the
net rate of electrons transferred from the left to the right
lead and ∆µ = µr − µl. The heat and work fluxes rep-
resent energy currents that are associated with entropy
production rates σi and affinities Ai as follows

σ1 =

(
1

Tc
− 1

Th

)
qh, A1 =

1

Tc
− 1

Th
, (49)

σ2 =
w

Tc
, A2 =

1

Tc
, (50)

σ3 =

(
1

Tc
− 1

Tm

)
qm, A3 =

1

Tc
− 1

Tm
. (51)

Accordingly, for a heat engine with losses due to the third
process, the two efficiencies are

η2 =
−σ2

σ1
=

−w
qh (1− Tc/Th)

, (52)

η3 =
−σ3

σ1
=
−qm (1− Tc/Tm)

qh (1− Tc/Th)
. (53)

We define the generating function of the system by
gj(t, γ1, γ2, γ3) =

〈
δj,j(t)e

γ1Σ1+γ2Σ2+γ3Σ3
〉
, where δ is the

Kronecker symbol. This generating function evolves ac-
cording to the equation [38]

d

dt

g0

gl
gr

 =


−kl0 − kr0 k0l k0re

−γ2∆µ/Tc

kl0 −k0l − kcrl + kmrl + khrl kclr + kmlr e
−γ3∆EA3 + khlre

−γ1∆EA1

kr0e
γ2∆µ/Tc kcrl + kmrl e

γ3∆EA3 + khrle
γ1∆EA1 −k0r − klr


g0

gl
gr

 . (54)

For γ1 = γ2 = γ3 = 0, we retrieve the master equation
for the probability pj(t) to be in state j at time t.

Below, the fluctuations of the efficiencies (η2, η3) are
quantitatively analyzed in three different cases: a close-
to-equilibrium (CE) case, a far-from-equilibrium (FE)
case, and a small loss (SL) case. The parameter val-
ues in each case are summarized in the caption of Fig. 2.
The efficiencies statistics has been obtained first by com-
puting numerically the highest eigenvalue of the matrix
in the right hand side of Eq. (54) yielding the CGF φ
of the various entropy production rates, and in a second
step, by using Eq. (12) to get the efficiency LDF from φ.
The code is written in Python 3 and uses the algorithms
implemented in the Scipy library [39].

In Fig. 3(a) and 3(b) we show the efficiency LDF
J(η2, η3) in the CE and FE cases respectively. As
expected, the maximum of J is located on the line

η2 + η3 = 1 corresponding to the reversible efficien-
cies. The minimum corresponds to the macroscopic ef-
ficiencies (η̄2, η̄3) = (0.19, 0.14) in the CE case, and to
(η̄2, η̄3) = (0.24, 0.33) in the FE case.

In Fig. 3(c) we verify the validity of the CE limit de-
veloped in Sec. V A. The cross-sections of the efficiency
LDF J obtained by direct numerical computation are in
perfect agreement with the same cross-sections, but ob-
tained from Eq. (45) of the CE limit. In Fig. 3(d), we
also show the cross-sections of J , but in the FE case illus-
trating that all the fluctuations associated to a large ef-
ficiency becomes generically equally likely independently
of the value of the other efficiency: the LDF flattens and
converges to the same limit at infinity for the different
cross-sections. Comparing Fig. 3(c) and 3(d), we remark
that the time scale on which a large efficiency fluctuation
disappears is much longer in the CE case than in the FE
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FIG. 2. Diagram representing the various operating modes of the photoelectric cell as a function of the affinities A1 and A3 for
(a) a small chemical potential difference ∆µ = 0.01, (b) a large chemical potential difference ∆µ = 1. Black dots correspond
to the three cases studied: the close to equilibrium case ’CE’, the small loss case ’SL’, and the far from equilibrium case ’FE’.
(1) to (3): Heat Engine, for each label 〈w〉 < 0, 〈qc〉 < 0, and more specifically (1) 〈qh〉 > 0 > 〈qm〉, (2) 〈qh〉 > 0, 〈qm〉 > 0,
(3) 〈qh〉 < 0 < 〈qm〉, (4): Dud Engine, 〈w〉 > 0, 〈qc〉 < 0. (5) to (7): Refrigerator and Heat Pump, for each label 〈w〉 > 0,
〈qc〉 > 0, and more specifically (5) 〈qh〉 > 0 > 〈qm〉, (6) 〈qh〉 < 0, 〈qm〉 < 0, (7) 〈qh〉 < 0 < 〈qm〉. Parameters for the machine
are Er = 2.5, El = 0.5, Γc = 1, Γm = 5, and Γh = Γl = Γr = 10, and more specifically in the CE case: Tc = 1, µl = 1,
µr = 1.035, Tm = 1.025, and Th = 1.05 ; in the FE case: µl = 1, µr = 2, Tc = 1, Tm = 5, and Th = 10 ; and in the SL case:
µl = 1, µr = 2, Tc = 1, Tm = 1.1, and Th = 10.

case.

Finally, we comment on the effect of the contraction
of Eq. (26) on the statistics of the remaining efficiency.
This situation corresponds to ignoring the third process
even though it is still influencing the machine dynam-
ics. In Fig. 4 we provide the contracted LDF Jct(η2). It
displays the generic shape of an efficiency LDF excepted
that no constraint exists on the position of the maximum,
e.g. it is below η̄2 in the FE case. This would be forbid-
den by the laws of thermodynamics in a machine with
only two processes, but it is allowed whenever an addi-
tional process has been ignored in the description of the
machine. Logically, when the ignored process is weakly
irreversible as in the SL case of Fig. (4)b, the maximum
of the efficiency LDF must be located close to the re-
versible efficiency: in the limit of a vanishing affinity for
the ignored process, we retrieve the usual efficiency fluc-
tuations of a machine with only two processes for which
the reversible efficiency is the least likely.

VI. CONCLUSION

In this paper we focused on complex machines display-
ing not one, but several goals. For each goal we intro-
duced an efficiency, paying attention to thermodynamic
consistency. Our motivation was twofold: first, stochas-
tic machines with several goals may exist in nature. Sec-
ond, if two different goals exist, one may affect the ef-
ficiency of the other one. We interpreted this as a loss
in a machine with a single goal and analyzed the conse-
quences of unknown losses on the efficiency statistics.

In these two cases, we described the general properties
of the large deviation function of the efficiency, using the
fluctuation theorem and assuming the convexity of the
large deviation function for the entropy production, and
we provided a method to obtain the large deviation func-
tion of the efficiency from the cumulant generating func-
tion of the entropy production. This work extends the
recent results of Refs. [24, 25, 27] on stochastic efficiency
to the case of machines with more than two processes.
In this case we confirmed that the minimum of the large
deviation function of the efficiency is still given by the
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FIG. 3. (a) and (b) Efficiency LDF J(η2, η3) for the photoelectric device of Fig. 1 operating on average as a heat engine. Solid
lines are contour lines and the oblique dash-dotted line is η2 + η3 = 1. (c) and (d) cross-sections of J(η2, η3) for various η3.
Symbols in (c) are obtained from Eq. (45). The figures on the left and on the right are for the CE and the FE case respectively,
see the parameters of Fig. 2.

macroscopic efficiencies defined as the ratio of mean en-
tropy productions, and the maximum is still connected to
an entropy production minimum. However, in the case of
a machine with unknown losses, the least likely efficiency
is reached for the most likely trajectories conditioned on
the reversibility of the input and output processes.

In the close to equilibrium limit we characterized the
large deviation function of the efficiency using the re-
sponse coefficient of the machine only (or equivalently
using the entropy productions correlation functions). In
this limit, we derived exactly the contracted large de-
viation function of the efficiency and found similarities
with the efficiency fluctuations of a machine with only
two processes. We support all our results by considering
a simplified model of photoelectric cell.

The theory developed in this paper includes the case
of machines with an arbitrary number of processes: we
provide in appendix A and B the most important for-

mula in the general case. Alternatively, one may always
merge the various processes into two (or three) groups,
the input processes, the output processes (and the loss
processes), in order to use the theory developed for ma-
chines with two (or three) processes. This procedure is
particularly convenient when considering that real physi-
cal systems often involve more than two processes, see for
instance Ref. [40] about an electronic circuit composed of
a double quantum dot channel capacitively coupled to a
quantum point contact. In this reference the measure-
ment of nano-currents leads to non trivial interactions
and additional dissipation in the device. At this point,
beyond the number of processes required to model a ma-
chine, it is worth stressing that quantum coherence and
destructive interference may significantly affect the fluc-
tuations of the stochastic efficiency [41].
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FIG. 4. (a) Far-from-equilibrium contracted LDF Jct(η2) (thick dashed red line) and various cross-sections of J(η2, η3) (thin
blue lines) for η3 ∈ [−10; 10]. The minimum is for η̄2 = 0.24. (b) LDF Jct(η2) contracted on small losses (thick dashed red line)
and various cross-sections of J(η2, η3) (thin blue lines) for η3 ∈ [−10; 10]. The minimum is for η̄2 = 0.14 and the maximum for
η∗2,ct = 1.08. Insert: zoom on the maximum.
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Appendix A: Cumulant generating function

In this appendix we obtain the efficiency LDF from the
cumulant generating function of the entropy productions
in the case of an arbitrary number of processes N . We
emphasize that this method can also be used to obtain
the contracted LDF. We also remark that it is usually
easier to compute numerically the efficiency LDFs using
this method.

The CGF and LDF for entropy productions are related
by a Legendre transform

I(σ1, σ2, . . . , σN )

= max
γ1,γ2,...,γN

[ N∑
i=1

γiσi− φ(γ1, γ2, . . . , γN )
]
. (A1)

We have defined the efficiencies as ηi = −σi/σ1 with

i = 2, . . . , N and we write now

I(σ1,−η2σ1,−η3σ1, . . . ,−ηNσ1)

= max
γ1,γ2,...,γN

[
(γ1 −

N∑
i=2

γiηi)σ1 − φ(γ1, γ2, . . . γN )
]

(A2)

and the minimization of Eq. (8) gives

J(η2, η3, . . . , ηN )

= min
σ1

max
γ1,γ2,...,γN

[
(γ1−

N∑
i=2

γiηi)σ1−φ(γ1, γ2, . . . , γN )
]
.

(A3)

We set γ = γ1 −
∑N
i=2 γiηi to obtain

J(η2, η3, . . . , ηN ) = min
σ1

max
γ

{
γσ1

+ max
γ2,...,γN

[
− φ(γ +

N∑
i=2

γiηi, γ2, . . . , γN )
]}
. (A4)
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We now define the function

fη2,...,ηN (γ) = − max
γ2,...,γN

{
− φ(γ +

N∑
i=2

γiηi, γ2, . . . , γN )
}

= min
γ2,...,γN

φ(γ +

N∑
i=2

γiηi, γ2, . . . , γN ) (A5)

and its Legendre transform

Fη2,...,ηN (σ1) = max
γ

{
γσ1 − fη2,...,ηN (γ)

}
. (A6)

Then the efficiency LDF can be rewritten

J(η2, η3, . . . , ηN ) = min
σ1

max
γ

{
γσ1 − fη2,...,ηN (γ)

}
= min

σ1

Fη2,...,ηN (σ1)

= −max
σ1

{
−Fη2,...,ηN (σ1)

}
= −fη2,...,ηN (0). (A7)

Using Eq. (A5), we conclude that

J(η2, η3, . . . , ηN ) = − min
γ2,...,γN

φ

(
N∑
i=2

γiηi, γ2, . . . , γN

)
.

(A8)

Appendix B: Least likely efficiency

In this appendix we use the fluctuation theorem to
prove some properties of the efficiency LDF in the general
case of a machine with arbitrary driving cycle and with
N processes contributing to the total entropy production.

Along a level line of the entropy productions LDF, the
total differential of I vanishes,

dI =

N∑
i=1

∂I

∂σi
dσi (B1)

= dσ1

(
∂I

∂σ1
+

N∑
i=2

∂I

∂σi

dσi
dσ1

)
(B2)

= 0. (B3)

At the origin we have η∗i = −dσi/dσ1 with i = 2, . . . , N
where the η∗i are defined by J(η∗2 , . . . , η

∗
N ) = I(0, . . . , 0).

So,

N∑
i=2

∂I

∂σi

∣∣∣∣
0

(
∂I

∂σ1

∣∣∣∣
0

)−1

η∗i = 1. (B4)

We may repeat the arguments for the machine with the
time-reversed driving cycle. We denote Î(σ1, . . . , σN )

the entropy productions LDF of this new machine, and
the efficiency LDF Ĵ(η2, . . . , ηN ). If we define η̂i

∗ by

Ĵ(η̂∗2 , . . . , η̂
∗
N ) = Î(0, . . . , 0), we have as above

N∑
i=2

∂Î

∂σi

∣∣∣∣
0

(
∂Î

∂σ1

∣∣∣∣
0

)−1

η̂∗i = 1. (B5)

We now use the fluctuation theorem for the entropy pro-
ductions:

I(σ1, . . . , σN )− Î(−σ1, . . . ,−σN ) = −
N∑
i=1

σi. (B6)

Taking the partial derivatives of this equation at origin
yields

∂I

∂σi

∣∣∣∣
0

+
∂Î

∂σi

∣∣∣∣
0

= −1 with i ∈ {1, . . . , N}. (B7)

So, the least likely efficiencies of the machine with the
time-reversed driving cycle are connected to those of the
original machine. More specifically, for stationary ma-
chines or machines operating under time-symmetric driv-
ing for which I(σ1, . . . , σN ) = Î(σ1, . . . , σN ), the least
likely efficiencies satisfy the same constraint as the re-
versible efficiencies:

N∑
i=2

η∗i = 1, (B8)

following from Eqs. (B4) and (B7).
Furthermore evaluating the fluctuation theorem (B6)

at null entropy production, we have

I(σ1,−η̄2 revσ1, . . . ,−η̄N revσ1)

= Î(−σ1, η̄2 revσ1, . . . , η̄N revσ1). (B9)

which after minimization over σ1 implies that the for-
ward and reversed efficiency LDF have the same values
at reversible efficiencies,

J(η̄2 rev, . . . , η̄N rev) = Ĵ(η̄2 rev, . . . , η̄N rev). (B10)

And still from (B6) evaluated at the origin, we have

I(0, . . . , 0) = Î(0, . . . , 0) , so the maximun of the forward
and reversed efficiency LDF have the same value

J(η∗2 , . . . , η
∗
N ) = Ĵ(η̂∗2 , . . . , η̂

∗
N ). (B11)

Let us emphasize that Eqs. (B10) and (B11) merge into
the same equation for stationary machines or machines
operating under time-symmetric driving since the least
likely efficiencies become the reversible efficiencies.
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