
SJS The Self Journal of Science Research article

A branch-and-bound algorithm for the prize-collecting
single-machine scheduling problem with deadlines and

total tardiness minimization
Version 1

Roberto Cordone 1, Pierre Hosteins 2 and Giovanni Righini 1

1. Dipartimento di Informatica - Università degli Studi di Milano
2. Dipartimento di Informatica - Università di Torino

Made public on Apr, 15th 2016 under Creative Commons 4.0 Attribution License
Reviewed and discussed at http://www.sjscience.org/article?id=522

Abstract We study a prize-collecting single-machine scheduling problem with hard deadlines,
where the objective is to minimize the difference between the total tardiness and the total
prize of the selected jobs. This problem is motivated by industrial applications, both as a
stand-alone model and as a pricing subproblem in column generation algorithms for parallel
machine scheduling problems. A pre-processing rule is devised to identify jobs that cannot
belong to any optimal schedule. The resulting reduced problem is solved to optimality by
a branch-and-bound algorithm and two integer linear programming (ILP) formulations. The
algorithm and the formulations are experimentally compared on randomly generated benchmark
instances.

http://www.sjscience.org/article?id=522

1 Introduction

The single-machine scheduling problem has received growing attention in the scientific literature of the
last decades, as shown by the reviews [1, 2] and the many references therein. The problem with no release
dates in which one wants to minimize the total tardiness (1//

∑
j Tj) was studied by Emmons [5]. Since

it is weakly NP-hard, Lawler [3] provided decomposition rules to be exploited by dynamic programming.
The problem with deadlines and total tardiness minimization (1/d̄j/

∑
j Tj) has received less attention:

Tadei et al. [4] adapted the rules by Lawler [3] and Emmons [5] and proposed a B&B algorithm to solve
the general case and derived conditions under which the problem can be solved in polynomial time.
Analogous conditions were shown by Koulamas and Kyparisis [6] for the problem variant with release
dates. In a more recent review Koulamas [2] stresses that the presence of deadlines makes the problem
harder in the general case, although - at the best of our knowledge - it is still open whether such a problem
is weakly or strongly NP-hard.

Oversubscribed scheduling is a research area of growing importance both for its many applications
and for its intriguing combinatorial structure; it gives origin to prize-collecting scheduling problems or,
equivalently, scheduling problems with rejection costs; the reader is referred to Shabtay et al. [7] for
a recent survey on this topic. We are interested in the prize-collecting variant of the single-machine
scheduling problem with deadlines and total tardiness minimization, where (at least a subset of) the
jobs are not compulsory but their insertion in the schedule is awarded a prize in the objective function
value. In particular we explicitly focus on oversubscribed scheduling, where the available processing time
is insufficient for accommodating all jobs and one has to select a subset of jobs; the objective function to
be maximized is the difference between the total tardiness and the prizes of the scheduled jobs. Several
practical motivations exist for studying effective methods to solve prize-collecting scheduling problems:
for example the heuristic algorithm presented by Wand and Tang [8] was motivated by applications in
the iron and steel industry as well as in mechanical industry (e.g. cutting processes). Other applications
are mentioned by Shabtay et al. [7], such as make-to-order production systems with limited production
capacity and tight delivery requirements as well as scheduling with an outsourcing option. Oversubscribed
scheduling problems also arise when machines represent highly valuable resources to be exploited at the
maximum extent, as is the case with Earth observing satellites [16].

The same type of scheduling problem arises as a pricing sub-problem, when multi-machine scheduling
problems are solved through column generation, where the prizes associated with the jobs are the optimal
dual values provided by the linear relaxation of the master problem. However, such multi-machine
scheduling problems have been so far investigated mainly for optimizing additive objective functions,
such as the total (weighted) completion time of jobs or the (weighted) number of tardy jobs: see for
example Chen and Powell [9] and van den Akker et al.[10]. The prize-collecting single-machine scheduling
problems addressed in these cases were solved through pseudo-polynomial algorithms.

In this paper we address the prize-collecting single-machine scheduling problem with deadlines and
total tardiness minimization. The initial motivation of our study was indeed the design and development
of a column generation algorithm for a multi-machine scheduling problem to optimize the workforce
management of computer analysts and code developers in a software house. The presence of constraints
on deadlines makes our approach more general and better applicable: on one hand, pushing the deadlines
far enough would reduce the problem to the easier total tardiness minimization scheduling problem, which
can be seen as a special case of the problem with deadlines; on the other hand, hard deadlines can be
quite important to model oversubscribed systems because in such a setting it may be worth scheduling
jobs with large associated prizes even if their execution is scheduled largely after the due date; however,
since scheduling problems are typically solved periodically at a tactical decision level, this phenomenon
can repeat over and over, possibly causing negative effects (e.g. on relations with recurring customers).
For this reason setting a maximum acceptable tardiness (i.e. a deadline) for each job may be necessary
and therefore algorithms are needed that take this into account.

A prize-collecting single-machine scheduling problem with deadlines was addressed by Bilgintürk et
al. [11] and by Oǧuz et al. [12]: however their model considers release dates and sequence-dependent
setup times and it was solved with a linear integer model and several heuristic algorithms. Nobibon and

1

Leus [13] addressed a single-machine scheduling problem with rejection costs and weighted total tardiness
minimization but no deadlines; two linear integer programming models were formulated and two B&B
algorithms were developed to solve the problem exactly.

In the following we formally define an ILP model of the problem (Section 2), we prove conditions to
be tested to possibly detect dominated jobs that cannot belong to any optimal solution (Section 3), we
illustrate a B&B algorithm that solves the problem exactly (Section 4) and we compare its results with
those obtained by a general-purpose ILP solver (Section 5).

2 Two ILP models

From a given job set J with cardinality n some jobs must be selected for being processed on a machine.
With each job j ∈ J some data are associated, namely a processing time pj , a due date dj , a deadline d̄j
and a prize λj . The objective is to maximize the difference between the total prize of the selected jobs
and their total tardiness, while respecting the deadlines. The tardiness Tj of each job j is the difference
between the completion time of the job and its due date, if the former exceeds the latter; otherwise, it is
zero. The cost for tardiness and the job prize are assumed to be converted in the same unit of measure, so
that they can be subtracted from each other in the objective function. A given job subset Jf ⊆ J includes
mandatory jobs. The subset Jf ensures that jobs that are crucial for particular reasons (e.g., have been
already formally accepted or are requested by an important client) are performed even if they imply
an overall loss (Tj ≥ λj). The prize-collecting single-machine scheduling problem with total tardiness
and hard deadlines can be indicated by 1/d̄j/

∑
j Tj + RC in symbolic scheduling language, where RC

represents the total rejection cost. Hereafter we present two integer linear programming formulation: the
former is a model with positional variables, while the latter is a time-indexed formulation.

An ILP model with positional variables. This model is based on a formulation by Lasserre and
Queyranne [14] for general scheduling problems. We elaborate on it to include the possibility of selecting
some jobs. The model uses the following variables:

• xjh ∈ {0, 1} is equal to 1 if and only if job j ∈ J is in position h ∈ {1, ..., n} in the schedule;

• yh ∈ {0, 1} is equal to 1 if and only if the schedule includes a job in position h ∈ {1, ..., n};

• Ch is the completion time of the job in position h ∈ {1, ..., n}, if any;

• Th ≥ 0 is the tardiness of the job in position h ∈ {1, ..., n}, if any.

2

The ILP model is as follows.

min
∑

h∈{1,...,n}

(
Th −

∑
j∈J

λjxjh

)
(1)

yh =
∑
j∈J

xjh h ∈ {1, ..., n}, (1b)

Ch ≥
∑
h′≤h

∑
j∈J

pjxjh′ −M(1− yp) h ∈ {1, ..., n}, (1c)

Th ≥ Ch −
∑
j∈J

djxjh h ∈ {1, ..., n}, (1d)

Th ≤
∑
j∈J

(d̄j − dj)xjh h ∈ {1, ..., n}, (1e)

∑
h∈{1,...,n}

xjh = 1 j ∈ Jf , (1f)

∑
h∈{1,...,n}

xjh ≤ 1 j ∈ J \ Jf , (1g)

Th ≥ 0 h ∈ {1, ..., n− 1}, (1h)

yh ≥ yh+1 h ∈ {1, ..., n− 1}. (1i)

Eq. (1) defines the objective function as the difference between the total tardiness and the total prize.
Eq. (1b) relates the x and y variables. Eq. (1c) defines the completion time of the job in position h as
the sum of the processing times of all jobs before it; note that it is necessary to introduce a big-M term
to allow for a zero completion time for positions where no job is processed. Eq. (1d) and (1e) define the
tardiness variables and limit their values according to the deadlines. Eq. (1f) and (1g) ensure that each
mandatory (respectively, facultative) job is processed exactly (respectively, at most) once, while Eq. (1i)
forces the occupied positions in the schedule to be contiguous. Note that when Tj ≥ λj , the job is not
worth processing and it can be discarded, unless j ∈ Jf . Therefore we can re-define the deadlines of
non-mandatory jobs as

d̄j := min{d̄j , dj + λj}. (2)

This can be done also for jobs with unspecified deadlines, if any exists. Tightening the deadlines can
help to make a more effective use of the precedence rules that will be presented later on. Parameter M
needs to be larger than the largest deadline maxj∈J{d̄j}. We observe that this formulation could be also
adapted to the problem variation with weighted tardiness considered by Nobibon and Leus [13]; however
this ILP formulation is different from theirs, since it does not require a variable zji which takes value 1
if and only if job j is selected and processed before job i. Avoiding these variables allows us to avoid a
set of O(n3) constraints into the model.

A time-indexed formulation. An alternative formulation, called the time-indexed (TI) formulation,
was proposed by de Sousa and Wolsey [15]. Their idea is to discretise the time index t ∈ {1, ..., tmax}
and to use a binary variable zjt that takes value 1 if and only if job j ∈ J starts at t ∈ {1, ..., tmax}.
Note that if processing times, due dates and deadlines are not integer, they have to be re-scaled adopting
a suitable elementary time unit. The value tmax is to be set according to the largest deadline. The TI
model also requires an additional parameter cjt which represents the cost of starting job j ∈ J at time

3

t ∈ {1, ..., tmax}.

min
∑
j∈J

d̄j−pj+1∑
t=1

cjtzjt (3)

d̄j−pj+1∑
t=1

zjt ≤ 1 j ∈ J, (3b)

∑
j∈J

t∑
s=t−pj+1

zjs ≤ 1 t ∈ {1, ..., tmax}, (3c)

zjt = 0 j ∈ J, t ∈ {d̄j − pj + 2, tmax}, (3d)

d̄j−pj+1∑
t=1

zjt = 1, j ∈ Jf . (3e)

This model is equivalent to the second ILP model presented in Nobibon and Leus [13] with the
addition of deadlines. The TI formulation is more general than the ILP model with positional variables,
because it can account also for problems where the tardiness cost cjt of starting job j ∈ J at time t is
not equal to max{t + pj − dj , 0}. A known disadvantage of the TI formulation is that the number of
variables and constraints can grow very large if tmax itself is large. However, its continuous relaxation
generally gives better lower bounds [15]. We used both models as benchmarks to evaluate the branch-
and-bound algorithm presented in the next sections. For this purpose we solved the two models with a
state-of-the-art ILP solver. In the following we indicate them with Ppos and Pti respectively.

3 Dominance and pre-processing

In this section we describe how jobs can be tested in order to detect whether some of them are dominated
by others. This pre-processing test can even allow to discard some jobs from further consideration.

We define the following dominance property:

Property 3.1. Let us consider two distinct jobs i, j ∈ J \ Jf . If pi ≤ pj, di ≥ dj, d̄i ≥ d̄j, λi ≥ λj and
at least one of the inequalities is strict, then job i dominates job j, i.e. optimality is not lost by neglecting
schedules that contain job j and do not contain job i.

Proof. Assume an optimal schedule S to contain job j but not job i. Consider the schedule S′ obtained
by replacing job j by job i, with job i starting in S′ at the same time as job j starts in S and leaving
all starting times of the other jobs unchanged. S′ is feasible since d̄i ≥ d̄j and pi ≤ pj and then deadline
constraints and no-overlap constraints are still satisfied in S′. The completion time of job i in S′ is not
larger than that of job j in S, while all the other jobs are not affected. Since di ≥ dj , the total tardiness
in S′ is not larger than the total tardiness in S. Since λi ≥ λj , the total prize in S′ is not smaller than
the total prize in S. Therefore S′ is also optimal.

This property allows us to define a set of jobs that dominate each job j ∈ J \ Jf ; we indicate such a
set by ∆j . Consequently, some valid inequalities can be inserted in the ILP formulations illustrated in
Section 2.

The following inequalities can be inserted in Ppos:∑
h∈{1,...,n}

xjh ≤
∑

h∈{1,...,n}
xih, j ∈ J \ Jf i ∈ ∆j . (1.i)

The following inequalities can be inserted in Pti:∑
t∈{1,...,tmax}

zjt ≤
∑

t∈{1,...,tmax}
zit, j ∈ J \ Jf i ∈ ∆j . (2.f)

4

Once the dominating subsets ∆j have been computed for each job j, we can exploit the following property:

Property 3.2. Consider a job j ∈ J \ Jf with a subset of dominators ∆j and consider any job k ∈
∆j ∪ Jf ∪ {j} such that d̄k ≥ d̄j. If ∑

i∈∆j∪Jf∪{j}:d̄i≤d̄k

pi > d̄k, (4)

then job j can be discarded without missing all optimal solutions.

Proof. When inequality (4) is verified, not all jobs in ∆j ∪Jf ∪{j} can be included in a feasible solution.
Since the jobs in Jf are mandatory and since each job i ∈ ∆j dominates j, then, by property 3.1, job j
can be discarded in favor of jobs in ∆j ∪ Jf without losing all optimal solutions.

Relying upon these two properties, it is possible to pre-process the instances in order to possibly
tighten their formulation (by Property 3.1) or to reduce their size (by Property 3.2). The computational
complexity of the pre-processing procedure is O(n2), because it requires to examine each pair of jobs. In
Section 5 we report on the impact of dominance rules and pre-processing on the ILP formulations shown
in Section 2 and on the B&B algorithm described in Section 4.

It is worth noting that this deadline-based pre-processing is generally applicable to single-machine
scheduling problems with prizes (or rejection costs) and total tardiness minimization, even when deadlines
are not specified as problem data. This is because they can be set as described in Section 2, equation (2).

4 Branch-and-Bound

For the exact optimization of the prize-collecting single-machine scheduling problem with deadlines we
designed a branch-and-bound algorithm that branches on the selectable jobs, either scheduling or rejecting
each of them.

This is equivalent to branching on auxiliary binary variables fj =
∑
p∈{1...n} xjp for each j ∈ J \ Jf

in formulation Ppos; it is also equivalent to branching on auxiliary binary variables fj =
∑
t∈{1...tmax} zjt

in formulation Pti.
For each sub-problem in the branch-and-bound algorithm, we compute a lower and an upper bound on

its best solution. The computation of these bounds is illustrated in the remainder after a brief survey of
the algorithm by Tadei et al. [4] which is used as a sub-routine within our branch-and-bound algorithm.

4.1 A subsidiary algorithm

The algorithm by Tadei et al. [4] is a depth-first-search branch-and-bound that computes the minimum
total tardiness for a set S = {1, ..., n} of jobs to be scheduled on a single machine. An earliest ending
time ej and a latest ending time lj are computed for each job j ∈ S. The algorithm makes intensive use
of two properties:

• Property 1: let i, j ∈ S such that i < j,
(a) i precedes j if di ≤ max{ej , dj} and li ≤ d̄j .
(b) i follows j if di > max{ej , dj}, d̄i ≥ lj and di + pi > lj .

• Property 2: if d̄n ≥
∑n
i=1 pi then job n in position k in the Early Due Date order can be optimally

set in some position r = k, ..., n in the schedule. For any fixed r, the set of predecessors Bn(r) and
the set of successors An(r) are given by
Bn(r) = {[1], [2], ..., [k − 1], [k + 1], ..., [r]} and An(r) = {[r + 1], ..., [n]}, where [k] indicates the job
in position k in the Early Due Date Order.

These two rules are a generalization to the problem with deadlines of the rules proposed by Lawler [3]
and Emmons [5] for the problem with no deadlines. Using the above properties allows to fix some jobs
in the schedule so that the remaining jobs form blocks. These blocks are further restricted by a suitable
branching mechanism.

5

4.2 Lower bounding

At each node of the branch-and-bound tree in our algorithm a lower bound is computed by independently
optimizing the total tardiness and the total prize. The former must be minimized, the latter must be
maximized, keeping into account the constraints coming from previous branchings. Let J0 ⊆ J \ Jf and
J1 ⊇ Jf be the subsets of jobs for which fj has been fixed to 0 and to 1, respectively.

Since all jobs in J1 must be scheduled, we compute the minimum total tardiness associated with these
jobs, ignoring all the other jobs. This is done with the branch-and-bound algorithm of Tadei et al. [4].
The use of this subsidiary branch-and-bound algorithm to process a single sub-problem is justified by its
velocity. However, when its running time becomes unacceptably large, the subsidiary branch-and-bound
can be truncated, still returning a valid lower bound for the total tardiness.

To compute an upper bound on the total prize that can be achieved, we select the maximum prize
subset of jobs (with respect to the prizes λj), complying with the deadlines. This corresponds to solving
the following ILP problem:

max
∑
j∈J

λjbj (5)

∑
j∈J:d̄j≤d̄i

pjbj ≤ d̄i i ∈ J (5b)

bj = 1 j ∈ J1 (5c)

bj = 0 j ∈ J0 (5d)

bj ∈ {0, 1} j ∈ J (5e)

where bj = 1 indicates that job j belongs to the solution.
Since tardiness minimisation and prizes maximisation are done independently, the difference of the

corresponding optimal values is a lower bound on the optimum value of the current sub-problem in the
branch-and-bound algorithm.

4.3 Upper bounding

An upper bound is computed with a simple heuristic method that is run for each sub-problem of the
branch-and-bound algorithm after the computation of the lower bound. It starts from the solution of the
minimum tardiness sub-problem, which provides a feasible schedule for the jobs in J1. The jobs from
J \ (J0 ∪ J1) are inserted in the current schedule, one by one, in non-increasing order of λj/pj (prize
to processing time ratio), so as to improve the gained prize as much as possible while consuming the
remaining working time as little as possible. Each new job is inserted in the position of the schedule where
it provides the largest improvement to the objective value (i.e., where it yields the minimum increase in
tardiness) and only if the insertion yields an improvement. When no more jobs can be profitably inserted,
the current solution provides an upper bound. A pseudo-code is shown in Algorithm 1.

4.4 The branch-and-bound algorithm

A best incumbent upper bound is indicated by UB∗. It is initialized with the heuristic algorithm shown
in Section 4.3 run on the whole instance with no fixed jobs.

Branching. We indicate by 0-nodes and 1-nodes the sub-problems of the branch-and-bound tree gen-
erated by setting a variable fj to 0 and to 1, respectively. We process each sub-problem ν (node, in the
remainder) of the branch-and-bound tree as follows.

• If ν is a 1-node then solve the minimum tardiness sub-problem; otherwise keep the same optimal
solution of the predecessor node. Let T ∗ be the minimum tardiness.

6

it provides the largest improvement to the objective value (i.e., where it yields the minimum increase in
tardiness) and only if the insertion yields an improvement. When no more jobs can be profitably inserted,
the current solution provides an upper bound. A pseudo-code is shown in Algorithm 1.

Algorithm 1 Heuristic(f, J, Jf ,�, p, d, d̄)

J0 = {j 2 J \ Jf : fj = 0};
J1 = Jf [{j 2 J \ Jf : fj = 1};
Compute the minimum tardiness solution x for J1 using the algorithm of Tadei et al. [4];
J := J \ (J0 [J1);
Sort J by non-increasing order of �j/pj ;
while J 6= ; do

j⇤ := arg max
j2J

�j

pj
;

Compute the best feasible position p⇤ for j⇤ in x with respect to the total tardiness;
if p⇤ exists and improves x then

Insert j⇤ in position p⇤ in x;
end if
J := J \ {j⇤};

end while
Compute the minimum tardiness solution with the set of jobs in x using the algorithm of Tadei et
al. [4];
Return x;

4.4 The branch-and-bound algorithm

A best incumbent upper bound is indicated by UB⇤. It is initialized with the heuristic algorithm shown
in Section 4.3 run on the whole instance with no fixed jobs.

Branching. We indicate by 0-nodes and 1-nodes the sub-problems of the branch-and-bound tree gen-
erated by setting a variable fj to 0 and to 1, respectively. We process each sub-problem ⌫ (node, in the
remainder) of the branch-and-bound tree as follows.

• If ⌫ is a 1-node then solve the minimum tardiness sub-problem; otherwise keep the same optimal
solution of the predecessor node. Let T ⇤ be the minimum tardiness.

• If ⌫ is a 0-node, then solve the prize maximization sub-problem (5); otherwise keep the same optimal
solution of the predecessor node. Let P ⇤ be the maximum prize.

• Set the lower bound LB⌫ := T ⇤ � P ⇤.

• Compute an upper bound UB⌫ with Algorithm 1.

• If UB⌫ < UB⇤, then update the best incumbent upper bound UB⇤.

• If LB⌫ � UB⇤, then prune ⌫.

• If ⌫ has not been pruned, then branch: select the job j⇤ 2 J \ (J0 [J1) that belongs to the optimal
solution of the prize maximization sub-problem (5) and has the largest �j/pj ratio. Then generate
two successor nodes by fixing fj⇤ either to 0 or to 1.

The branching rule aims at guaranteeing that the lower bound in the two successor nodes is larger than
in the predecessor node. In fact, setting fj⇤ = 1 makes an optimal solution of the minimum tardiness
sub-problem infeasible, while fixing fj⇤ = 0 makes an optimal solution of the maximum prize sub-problem
infeasible.

7

• If ν is a 0-node, then solve the prize maximization sub-problem (??); otherwise keep the same
optimal solution of the predecessor node. Let P ∗ be the maximum prize.

• Set the lower bound LBν := T ∗ − P ∗.

• Compute an upper bound UBν with Algorithm 1.

• If UBν < UB∗, then update the best incumbent upper bound UB∗.

• If LBν ≥ UB∗, then prune ν.

• If ν has not been pruned, then branch: select the job j∗ ∈ J \ (J0 ∪ J1) that belongs to the optimal
solution of the prize maximization sub-problem (??) and has the largest λj/pj ratio. Then generate
two successor nodes by fixing fj∗ either to 0 or to 1.

The branching rule aims at guaranteeing that the lower bound in the two successor nodes is larger than
in the predecessor node. In fact, setting fj∗ = 1 makes an optimal solution of the minimum tardiness
sub-problem infeasible, while fixing fj∗ = 0 makes an optimal solution of the maximum prize sub-problem
infeasible.

Search strategy. The branch-and-bound tree is explored with best-first-search strategy: the next
investigated sub-problem is the most promising one in the set of open sub-problems, that is the one with
the smallest lower bound.

5 Computational experiments

In this section we report on the outcome of computational tests concerning the ILP formulations illus-
trated in Section 2 and the branch-and-bound algorithm described in Section 4. The computations were
performed on an eight-threads Intel(R) Core(TM) i7-3770 CPU with 3.40 GHz and 8 GB RAM. The
branch-and-bound algorithm was coded in C++ and compiled with g++ 4.7.2, while the ILP formula-
tions were solved with the C++ library of CPLEX 12.5.1.

7

5.1 Instances

We generated random instances as follows. We fixed the minimum and the maximum values of parameters
p, d and λ and for each job we selected a random value in the allowed range, with a uniform probability
distribution. The processing times and the due dates have minimum values at pmin = 0.5 and dmin = 2,
while the maximum values are related to the total number of jobs, with the following combinations:
(|J |, pmax, dmax) ∈ {(20, 10, 40), (40, 15, 80), (80, 15, 120), (120, 20, 200), (200, 30, 300)}. The rationale is
to keep a direct correlation among the number of jobs, the maximum processing time and the maximum
due date, in order to avoid the extreme opposite situations in which only very few jobs can be processed or
all jobs can be easily processed respecting the due dates. The processing times were generated as rational
numbers with a precision of 0.1, while the due dates were generated as integer values. The prize of each
job, λj , was extracted from the range [1; 10] with uniform probability distribution and with a precision of
0.01. The deadlines were derived from the due dates, generating d̄j−dj for each job j as a random integer
value with uniform probability distribution in {0, . . . , 10}. For each of the triplets (|J |, pmax, dmax) listed
above, we generated five different random instances with an associated ID i = 1, . . . , 5. Finally, for each
instance we also generated a duplicate instance, where mandatory jobs are selected so that they require
at least 25% of the maximum available time. These jobs are chosen at random, but such that Jf define a
feasible set. Each of the resulting 50 instances is represented by the quadruplet (|J |, pmax, dmax, i), with
an additional f index attached for the instances with mandatory jobs.

5.2 Effectiveness of dominance rules and pre-processing

We designed a first set of computational tests to assess the effectiveness of dominance rules and pre-
processing, as described in Section 3. In Tables 1 to 3 we present the results obtained with Formula-
tion Ppos, Formulation Pti and the branch-and-bound algorithm with and without dominance rules and
pre-processing. Results have been obtained with a time-out of 1000 seconds. For each set of instances
with given |J |, we display the average total running time in seconds and the average absolute and relative
gap between the lower and the upper bounds. As stated in Section 2, we add the constant term

∑
j∈J λj

to the objective function of the ILP models, thus transforming our objective in a total tardiness penalty
plus a total rejection cost, so that the objective function value (to be minimized) is always positive. The
second column of each table indicates the average number of jobs eliminated by the pre-processing pro-
cedure: remarkably, the pre-processing eliminated up to one third of the jobs. In Section 3 we have also
presented inequalities (1.i) and (2.f) to tighten the two ILP formulations. Experimentally, we observed
that the inclusion of inequalities (2.f) did not yield improvements when solving Formulation Pti; there-
fore these inequalities were not used in the next experiments. On the contrary, the results significantly
improved when we included inequalities (1.i) in Formulation Ppos.

Ppos

without rules and pre-processing with rules and pre-processing
instances # jobs elim. time abs. gap rel. gap time abs. gap rel. gap

(20, 10, 40) 1.8 < 1 0 0% < 1 0 0%
(40, 15, 80) 4.6 25 0 0% 11 0 0%
(80, 15, 120) 13.8 808 3.50 2.08% 806 4.00 1.88%
(120, 20, 200) 23.6 1000 6.64 1.87% 1000 3.04 0.81%
(200, 30, 300) 62.4 1000 103.35 28.98% 1000 1.05 0.19%

Table 1: Computational time (in seconds), absolute and relative gaps for Formulation Ppos without and
with the use of valid inequalities and pre-processing, on the 25 instances with no mandatory jobs and a
1000 seconds time-out. Values are averaged on 5 instances of the same size.

Pti

without pre-processing with pre-processing
instances # jobs elim. time abs. gap rel. gap time abs. gap rel. gap

(20, 10, 40) 1.8 4.4 0 0% 2.6 0 0%
(40, 15, 80) 4.6 810.2 0.89 1.01% 813.6 0.82 0.92%
(80, 15, 120) 13.8 1000 0.79 0.36% 918.2 0.81 0.36%
(120, 20, 200) 23.6 1000 2.33 0.61% 1000 2.42 0.63%
(200, 30, 300) 62.4 1000 11.81 1.65% 1000 7.16 1.01%

Table 2: Computational time (in seconds), absolute and relative gaps for Formulation Pti without and
with the use pre-processing, on the 25 instances with no mandatory job and a 1000 seconds time-out.
Values are averaged on 5 instances of the same size.

Branch-and-bound
without pre-processing with pre-processing

instances # jobs elim. time abs. gap rel. gap time abs. gap rel. gap

(20, 10, 40) 1.8 < 1 0 0% < 1 0 0%
(40, 15, 80) 4.6 3.6 0 0% 3.8 0 0%
(80, 15, 120) 13.8 39.6 0 0% 35 0 0%
(120, 20, 200) 23.6 306.6 0 0% 279.2 0 0%
(200, 30, 300) 62.4 296.4 0.23 0.03% 276.8 0.22 0.03%

Table 3: Computational time (in seconds), absolute and relative gaps for the branch-and-bound algorithm
without and with the use of pre-processing, on the 25 instances with no mandatory jobs and a 1000 seconds
time-out. Values are averaged on 5 instances of the same size.

of magnitude. The introduction of pre-processing and valid inequalities helped reduce the primal-dual
gap mainly for the largest instances and it allowed closing the gap within the time-out for instance
(80, 15, 120, 4) with Formulation Pti. Unfortunately, there was no beneficial impact on the quality of the
lower bounds.
Using the branch-and-bound algorithm, the solution process of all instances with 80 jobs or more was
enhanced by the pre-processing. The pre-processing reduced the computing time required by the branch-
and-bound by only a handful of seconds on most instances; however, the gain was more significant when
a large number of jobs was considered, as in instances (200, 30, 300, 2) and (200, 30, 300, 3).

9

Table 1: Computational time (in seconds), absolute and relative gaps for Formulation Ppos without and
with the use of valid inequalities and pre-processing, on the 25 instances with no mandatory jobs and a
1000 seconds time-out. Values are averaged on 5 instances of the same size.

The results obtained with the two ILP formulations show similar improvements in computing time
when the pre-processing was used. In particular, the results for the largest instances (200 jobs) were

8

Ppos

without rules and pre-processing with rules and pre-processing
instances # jobs elim. time abs. gap rel. gap time abs. gap rel. gap

(20, 10, 40) 1.8 < 1 0 0% < 1 0 0%
(40, 15, 80) 4.6 25 0 0% 11 0 0%
(80, 15, 120) 13.8 808 3.50 2.08% 806 4.00 1.88%
(120, 20, 200) 23.6 1000 6.64 1.87% 1000 3.04 0.81%
(200, 30, 300) 62.4 1000 103.35 28.98% 1000 1.05 0.19%

Table 1: Computational time (in seconds), absolute and relative gaps for Formulation Ppos without and
with the use of valid inequalities and pre-processing, on the 25 instances with no mandatory jobs and a
1000 seconds time-out. Values are averaged on 5 instances of the same size.

Pti

without pre-processing with pre-processing
instances # jobs elim. time abs. gap rel. gap time abs. gap rel. gap

(20, 10, 40) 1.8 4.4 0 0% 2.6 0 0%
(40, 15, 80) 4.6 810.2 0.89 1.01% 813.6 0.82 0.92%
(80, 15, 120) 13.8 1000 0.79 0.36% 918.2 0.81 0.36%
(120, 20, 200) 23.6 1000 2.33 0.61% 1000 2.42 0.63%
(200, 30, 300) 62.4 1000 11.81 1.65% 1000 7.16 1.01%

Table 2: Computational time (in seconds), absolute and relative gaps for Formulation Pti without and
with the use pre-processing, on the 25 instances with no mandatory job and a 1000 seconds time-out.
Values are averaged on 5 instances of the same size.

Branch-and-bound
without pre-processing with pre-processing

instances # jobs elim. time abs. gap rel. gap time abs. gap rel. gap

(20, 10, 40) 1.8 < 1 0 0% < 1 0 0%
(40, 15, 80) 4.6 3.6 0 0% 3.8 0 0%
(80, 15, 120) 13.8 39.6 0 0% 35 0 0%
(120, 20, 200) 23.6 306.6 0 0% 279.2 0 0%
(200, 30, 300) 62.4 296.4 0.23 0.03% 276.8 0.22 0.03%

Table 3: Computational time (in seconds), absolute and relative gaps for the branch-and-bound algorithm
without and with the use of pre-processing, on the 25 instances with no mandatory jobs and a 1000 seconds
time-out. Values are averaged on 5 instances of the same size.

of magnitude. The introduction of pre-processing and valid inequalities helped reduce the primal-dual
gap mainly for the largest instances and it allowed closing the gap within the time-out for instance
(80, 15, 120, 4) with Formulation Pti. Unfortunately, there was no beneficial impact on the quality of the
lower bounds.
Using the branch-and-bound algorithm, the solution process of all instances with 80 jobs or more was
enhanced by the pre-processing. The pre-processing reduced the computing time required by the branch-
and-bound by only a handful of seconds on most instances; however, the gain was more significant when
a large number of jobs was considered, as in instances (200, 30, 300, 2) and (200, 30, 300, 3).

9

Table 2: Computational time (in seconds), absolute and relative gaps for Formulation Pti without and
with the use pre-processing, on the 25 instances with no mandatory job and a 1000 seconds time-out.
Values are averaged on 5 instances of the same size.

Ppos

without rules and pre-processing with rules and pre-processing
instances # jobs elim. time abs. gap rel. gap time abs. gap rel. gap

(20, 10, 40) 1.8 < 1 0 0% < 1 0 0%
(40, 15, 80) 4.6 25 0 0% 11 0 0%
(80, 15, 120) 13.8 808 3.50 2.08% 806 4.00 1.88%
(120, 20, 200) 23.6 1000 6.64 1.87% 1000 3.04 0.81%
(200, 30, 300) 62.4 1000 103.35 28.98% 1000 1.05 0.19%

Table 1: Computational time (in seconds), absolute and relative gaps for Formulation Ppos without and
with the use of valid inequalities and pre-processing, on the 25 instances with no mandatory jobs and a
1000 seconds time-out. Values are averaged on 5 instances of the same size.

Pti

without pre-processing with pre-processing
instances # jobs elim. time abs. gap rel. gap time abs. gap rel. gap

(20, 10, 40) 1.8 4.4 0 0% 2.6 0 0%
(40, 15, 80) 4.6 810.2 0.89 1.01% 813.6 0.82 0.92%
(80, 15, 120) 13.8 1000 0.79 0.36% 918.2 0.81 0.36%
(120, 20, 200) 23.6 1000 2.33 0.61% 1000 2.42 0.63%
(200, 30, 300) 62.4 1000 11.81 1.65% 1000 7.16 1.01%

Table 2: Computational time (in seconds), absolute and relative gaps for Formulation Pti without and
with the use pre-processing, on the 25 instances with no mandatory job and a 1000 seconds time-out.
Values are averaged on 5 instances of the same size.

Branch-and-bound
without pre-processing with pre-processing

instances # jobs elim. time abs. gap rel. gap time abs. gap rel. gap

(20, 10, 40) 1.8 < 1 0 0% < 1 0 0%
(40, 15, 80) 4.6 3.6 0 0% 3.8 0 0%
(80, 15, 120) 13.8 39.6 0 0% 35 0 0%
(120, 20, 200) 23.6 306.6 0 0% 279.2 0 0%
(200, 30, 300) 62.4 296.4 0.23 0.03% 276.8 0.22 0.03%

Table 3: Computational time (in seconds), absolute and relative gaps for the branch-and-bound algorithm
without and with the use of pre-processing, on the 25 instances with no mandatory jobs and a 1000 seconds
time-out. Values are averaged on 5 instances of the same size.

of magnitude. The introduction of pre-processing and valid inequalities helped reduce the primal-dual
gap mainly for the largest instances and it allowed closing the gap within the time-out for instance
(80, 15, 120, 4) with Formulation Pti. Unfortunately, there was no beneficial impact on the quality of the
lower bounds.
Using the branch-and-bound algorithm, the solution process of all instances with 80 jobs or more was
enhanced by the pre-processing. The pre-processing reduced the computing time required by the branch-
and-bound by only a handful of seconds on most instances; however, the gain was more significant when
a large number of jobs was considered, as in instances (200, 30, 300, 2) and (200, 30, 300, 3).

9

Table 3: Computational time (in seconds), absolute and relative gaps for the branch-and-bound algorithm
without and with the use of pre-processing, on the 25 instances with no mandatory jobs and a 1000 seconds
time-out. Values are averaged on 5 instances of the same size.

always better when pre-processing and dominance rules were used. This is particularly evident with
Formulation Ppos, where the primal-dual gap for instance (200, 30, 300, 3) was reduced by two orders
of magnitude. The introduction of pre-processing and valid inequalities helped reduce the primal-dual
gap mainly for the largest instances and it allowed closing the gap within the time-out for instance
(80, 15, 120, 4) with Formulation Pti. Unfortunately, there was no beneficial impact on the quality of the
lower bounds.
Using the branch-and-bound algorithm, the solution process of all instances with 80 jobs or more was
enhanced by the pre-processing. The pre-processing reduced the computing time required by the branch-
and-bound by only a handful of seconds on most instances; however, the gain was more significant when
a large number of jobs was considered, as in instances (200, 30, 300, 2) and (200, 30, 300, 3).

5.3 Comparison between methods

In this subsection we compare three methods for solving the prize-collecting single-machine scheduling
problem with deadlines: the former two methods consist in solving the two ILP formulations shown in
Section 2 with an ILP solver, while the third method is the branch-and-bound algorithm presented in
Section 4, enhanced by the pre-processing and the dominance rules outlined in Section 3. We also compare
the results obtained with the three methods on the 25 instances with mandatory jobs: these results are
reported in Table 5. We use bold fonts to put the best results in evidence. The computational results show
poor performance of Formulation Pti, whose solution was generally slower than that of Formulation Ppos

and the branch-and-bound algorithm. However, when other algorithms did not converge, formulation Pti

provided a better lower bound, in line with its reputation of yielding a tighter relaxation of the problem.
The branch-and-bound algorithm found proven optimal solutions within 1 000 seconds for all but one of
50 instances. Moreover, it provided the best results for all instances with 80 jobs or more (see Tables 1

9

to 3) and for all instances but one in Table 5. This is a remarkable feature of the branch-and-bound
algorithm, since the other two methods could not close the gap within the time-out for instances with 80
jobs or more.
The branch-and-bound algorithm dominated the other two methods also in terms of bound tightness,
with the only exception of the last instance with no mandatory jobs, where Pti provided a better lower
bound.

5.3 Comparison between methods

In this subsection we compare three methods for solving the prize-collecting single-machine scheduling
problem with deadlines: the former two methods consist in solving the two ILP formulations shown in
Section 2 with an ILP solver, while the third method is the branch-and-bound algorithm presented in
Section 4, enhanced by the pre-processing and the dominance rules outlined in Section 3. We also compare
the results obtained with the three methods on the 25 instances with mandatory jobs: these results are
reported in Table 5. We use bold fonts to put the best results in evidence. The computational results show
poor performance of Formulation Pti, whose solution was generally slower than that of Formulation Ppos

and the branch-and-bound algorithm. However, when other algorithms did not converge, formulation Pti

provided a better lower bound, in line with its reputation of yielding a tighter relaxation of the problem.
The branch-and-bound algorithm found proven optimal solutions within 1 000 seconds for all but one of
50 instances. Moreover, it provided the best results for all instances with 80 jobs or more (see Tables 1
to 3) and for all instances but one in Table 5. This is a remarkable feature of the branch-and-bound
algorithm, since the other two methods could not close the gap within the time-out for instances with 80
jobs or more.
The branch-and-bound algorithm dominated the other two methods also in terms of bound tightness,
with the only exception of the last instance with no mandatory jobs, where Pti provided a better lower
bound.

Ppos Pti Branch-and-bound
instance time LB UB time LB UB time LB UB

(20, 10, 40, 1) < 1 44.34 1 44.34 1 44.34
(20, 10, 40, 2) < 1 44.14 2 44.14 2 44.14
(20, 10, 40, 3) < 1 41.35 1 41.35 1 41.35
(20, 10, 40, 4) 1 33.96 8 33.96 < 1 33.96
(20, 10, 40, 5) 1 51.82 1 51.82 < 1 51.82
(40, 15, 80, 1) 7 106.10 68 106.10 < 1 106.10
(40, 15, 80, 2) 3 121.69 1000 121.33 121.69 9 121.69
(40, 15, 80, 3) 33 85.61 1000 83.87 85.79 1 85.61
(40, 15, 80, 4) 5 120.48 1000 119.96 120.48 7 120.48
(40, 15, 80, 5) 8 83.79 1000 82.48 83.79 2 83.79
(80, 15, 120, 1) 1000 237.59 238.24 1000 237.21 238.24 39 238.24
(80, 15, 120, 2) 1000 194.52 203.89 1000 201.92 204.51 22 203.78
(80, 15, 120, 3) 30 246.83 1000 246.72 246.83 19 246.83
(80, 15, 120, 4) 1000 251.34 255.24 591 255.24 11 255.24
(80, 15, 120, 5) 1000 221.06 227.13 1000 226.83 227.13 84 227.13
(120, 20, 200, 1) 1000 356.44 359.85 1000 357.75 361.29 19 359.56
(120, 20, 200, 2) 1000 429.91 429.93 1000 429.28 432.70 4 429.93
(120, 20, 200, 3) 1000 363.84 369.74 1000 367.47 370.31 872 369.25
(120, 20, 200, 4) 1000 391.32 392.54 1000 392.04 393.61 470 392.54
(120, 20, 200, 5) 1000 395.97 400.64 1000 399.01 399.76 31 399.74
(200, 30, 300, 1) 1000 674.50 675.32 1000 674.54 682.76 25 675.03
(200, 30, 300, 2) 1000 777.20 778.56 1000 778.02 783.24 221 778.56
(200, 30, 300, 3) 1000 714.93 715.53 1000 714.84 722.85 128 715.49
(200, 30, 300, 4) 1000 703.77 705.94 1000 704.60 710.14 10 705.61
(200, 30, 300, 5) 1000 712.03 713.92 1000 712.11 720.94 1000 711.80 712.91

Table 4: Computational time (in seconds), lower and upper bounds for Formulation Ppos, Formulation Pti

and the branch-and-bound algorithm (with pre-processing and dominance rules) with a timeout of 1 000
seconds. The smallest computing time within the time-out is displayed in bold font; if no algorithm
converged, the best UB is displayed in bold font and the best LB in italic font.

10

Table 4: Computational time (in seconds), lower and upper bounds for Formulation Ppos, Formulation Pti

and the branch-and-bound algorithm (with pre-processing and dominance rules) with a timeout of 1 000
seconds. The smallest computing time within the time-out is displayed in bold font; if no algorithm
converged, the best UB is displayed in bold font and the best LB in italic font.

In order to assess the speed with which each algorithm was able to find good quality solutions, we also
computed lower and upper bounds for each algorithm within a smaller time limit of 100 seconds. In these
tests we focused on the values of the bounds, ignoring the computing time. The results are displayed
in Tables 6 and 7. The best upper bounds are displayed in bold font, while the best lower bounds are
displayed in italic. These results confirm the superiority of the branch-and-bound algorithm, which found
the best upper bound for all 50 instances. We could also note that the lower and upper bound values for
both ILP formulations on the largest instances sometimes drift quite far away from the optimum, thus
providing unreliable estimations. On the contrary the branch-and-bound algorithm was able to provide
the best LB more frequently than Formulation Pti for the instances that remained unsolved after 100
seconds. Even in the worst case, the primal-dual gap provided by the branch-and-bound algorithm was
only a few units large. This suggests that, while the direct application of a state-of-the-art general-
purpose solver does not provide a viable approach to the problem, the branch-and-bound algorithm can
be used as a reliable heuristic in case of computing time shortage.

10

Ppos Pti Branch-and-bound
instance time LB UB time LB UB time LB UB

(20, 10, 40, 1)f < 1 59.10 2 59.10 < 1 59.10
(20, 10, 40, 2)f < 1 57.24 1 57.24 < 1 57.24
(20, 10, 40, 3)f 1 45.99 2 45.99 1 45.99
(20, 10, 40, 4)f < 1 33.96 19 33.96 < 1 33.96
(20, 10, 40, 5)f < 1 66.23 1 66.23 1 66.23
(40, 15, 80, 1)f 8 133.78 23 133.78 1 133.78
(40, 15, 80, 2)f 3 133.04 20 133.04 1 133.04
(40, 15, 80, 3)f 14 91.39 89 91.39 < 1 91.39
(40, 15, 80, 4)f 2 123.01 9 123.01 2 123.01
(40, 15, 80, 5)f 7 95.69 81 95.69 1 95.69
(80, 15, 120, 1)f 1000 258.56 261.18 1000 260.27 261.59 11 261.18
(80, 15, 120, 2)f 1000 211.64 218.73 290 217.90 7 217.90
(80, 15, 120, 3)f 281 254.52 1000 252.98 255.32 6 254.52
(80, 15, 120, 4)f 1000 299.94 301.04 941 301.04 3 301.04
(80, 15, 120, 5)f 1000 232.44 248.56 1000 247.79 248.03 27 248.03
(120, 20, 200, 1)f 1000 377.40 390.08 1000 389.79 391.68 6 390.38
(120, 20, 200, 2)f 707 452.15 1000 450.52 453.72 3 452.15
(120, 20, 200, 3)f 336 388.57 1000 387.66 389.17 99 388.57
(120, 20, 200, 4)f 1000 409.88 420.70 1000 418.84 419.52 256 419.43
(120, 20, 200, 5)f 1000 422.16 445.02 1000 443.94 445.04 11 444.30
(200, 30, 300, 1)f 1000 699.78 715.69 1000 714.36 716.42 8 715.10
(200, 30, 300, 2)f 1000 810.48 811.48 1000 810.71 813.28 672 811.38
(200, 30, 300, 3)f 1000 729.05 737.70 1000 733.28 736.23 25 734.17
(200, 30, 300, 4)f 1000 741.43 752.33 1000 749.47 752.08 11 750.36
(200, 30, 300, 5)f 1000 745.76 748.75 1000 746.79 757.37 619 747.57

Table 5: Computational time (in seconds), lower and upper bounds for Formulation Ppos, Formulation Pti

and the branch-and-bound algorithm on the 25 instances with at least 25% of mandatory jobs, with a
timeout at 1 000 seconds. The smallest computing time within the timeout is displayed in bold font; if
no algorithm converged, the best UB is displayed in bold font and the best LB in italic font.

In order to assess the speed with which each algorithm was able to find good quality solutions, we also
computed lower and upper bounds for each algorithm within a smaller time limit of 100 seconds. In these
tests we focused on the values of the bounds, ignoring the computing time. The results are displayed
in Tables 6 and 7. The best upper bounds are displayed in bold font, while the best lower bounds are
displayed in italic. These results confirm the superiority of the branch-and-bound algorithm, which found
the best upper bound for all 50 instances. We could also note that the lower and upper bound values for
both ILP formulations on the largest instances sometimes drift quite far away from the optimum, thus
providing unreliable estimations. On the contrary the branch-and-bound algorithm was able to provide
the best LB more frequently than Formulation Pti for the instances that remained unsolved after 100
seconds. Even in the worst case, the primal-dual gap provided by the branch-and-bound algorithm was
only a few units large. This suggests that, while the direct application of a state-of-the-art general-
purpose solver does not provide a viable approach to the problem, the branch-and-bound algorithm can
be used as a reliable heuristic in case of computing time shortage.

11

Table 5: Computational time (in seconds), lower and upper bounds for Formulation Ppos, Formulation Pti

and the branch-and-bound algorithm on the 25 instances with at least 25% of mandatory jobs, with a
timeout at 1 000 seconds. The smallest computing time within the timeout is displayed in bold font; if
no algorithm converged, the best UB is displayed in bold font and the best LB in italic font.

11

Ppos Pti Branch-and-bound
instance LB UB LB UB LB UB

(20, 10, 40, 1) 44.34 44.34 44.34
(20, 10, 40, 2) 44.14 44.14 44.14
(20, 10, 40, 3) 41.35 41.35 41.35
(20, 10, 40, 4) 33.96 33.96 33.96
(20, 10, 40, 5) 51.82 51.82 51.82
(40, 15, 80, 1) 106.10 106.10 106.10
(40, 15, 80, 2) 121.69 121.05 121.69 121.69
(40, 15, 80, 3) 85.61 83.61 85.79 85.61
(40, 15, 80, 4) 120.48 119.78 120.48 120.48
(40, 15, 80, 5) 83.79 82.46 84.24 83.79
(80, 15, 120, 1) 236.86 238.37 237.21 238.76 238.24
(80, 15, 120, 2) 194.16 204.02 201.60 205.09 203.78
(80, 15, 120, 3) 246.83 246.72 247.62 246.83
(80, 15, 120, 4) 250.62 255.72 254.95 255.44 255.24
(80, 15, 120, 5) 220.00 227.13 226.78 227.94 227.13
(120, 20, 200, 1) 340.97 371.69 357.64 365.38 359.56
(120, 20, 200, 2) 426.64 430.66 429.26 499.51 429.93
(120, 20, 200, 3) 326.06 370.66 366.86 391.25 367.11 369.25
(120, 20, 200, 4) 391.04 396.91 392.04 498.40 391.72 392.54
(120, 20, 200, 5) 242.54 423.57 399.01 404.33 399.74
(200, 30, 300, 1) 524.85 1016.56 0.00 1068.47 675.03
(200, 30, 300, 2) 373.87 1097.09 0.00 953.19 778.10 778.56
(200, 30, 300, 3) 550.00 1045.76 0.00 1054.87 715.42 715.49
(200, 30, 300, 4) 370.18 1100.54 0.00 904.77 705.61
(200, 30, 300, 5) 385.85 1090.57 0.00 1090.57 710.86 712.91

Table 6: Experimental results for the instances with no mandatory jobs, as in Tables 1 to 3, but with a
time-out set at 100 seconds.

12

Table 6: Experimental results for the instances with no mandatory jobs, as in Tables 1 to 3, but with a
time-out set at 100 seconds.

12

Ppos Pti Branch-and-bound
instance LB UB LB UB LB UB

(20, 10, 40, 1)f 59.10 59.10 59.10
(20, 10, 40, 2)f 57.24 57.24 57.24
(20, 10, 40, 3)f 45.99 45.99 45.99
(20, 10, 40, 4)f 33.96 33.96 33.96
(20, 10, 40, 5)f 66.23 66.23 66.23
(40, 15, 80, 1)f 133.78 133.78 133.78
(40, 15, 80, 2)f 133.04 133.04 133.04
(40, 15, 80, 3)f 91.39 91.39 91.39
(40, 15, 80, 4)f 123.01 123.01 123.01
(40, 15, 80, 5)f 95.69 95.52 95.69 95.69
(80, 15, 120, 1)f 256.86 261.18 260.11 263.43 261.18
(80, 15, 120, 2)f 210.56 219.13 217.40 217.90 217.90
(80, 15, 120, 3)f 254.08 254.52 252.98 255.82 254.52
(80, 15, 120, 4)f 299.54 301.04 301.00 301.04 301.04
(80, 15, 120, 5)f 232.35 248.67 247.79 248.03 248.03
(120, 20, 200, 1)f 377.40 461.13 389.49 504.52 390.08
(120, 20, 200, 2)f 449.53 452.31 450.50 461.92 452.15
(120, 20, 200, 3)f 220.85 471.47 387.15 490.99 388.53 388.57
(120, 20, 200, 4)f 408.78 422.60 418.59 426.74 418.71 419.43
(120, 20, 200, 5)f 378.07 452.93 443.92 449.55 444.30
(200, 30, 300, 1)f 552.95 1021.99 0.00 884.04 715.10
(200, 30, 300, 2)f 597.86 1097.33 0.00 933.98 810.24 811.38
(200, 30, 300, 3)f 409.67 1003.28 0.00 879.71 734.17
(200, 30, 300, 4)f 437.46 1030.79 0.00 916.47 750.36
(200, 30, 300, 5)f 554.74 964.09 0.00 912.18 746.31 747.57

Table 7: Experimental results for the instances with mandatory jobs, as in Table 5, but with a time-out
set at 100 seconds.

13

Table 7: Experimental results for the instances with mandatory jobs, as in Table 5, but with a time-out
set at 100 seconds.

13

6 Conclusions

In this paper we have introduced the prize-collecting single-machine scheduling problem with total tar-
diness minimization and deadlines, a single machine scheduling problem that had not yet been studied
before. The main motivation leading to our study came from an industrial multi-machine scheduling
problem to be solved with column generation; however the specific prize-collecting scheduling problem
is interesting in its own right for its intriguing combinatorial structure. We have presented a dominance
rule between jobs as well as a rule to identify dominated jobs that can be deleted without losing optimal
solutions. We have proposed two ILP formulations, that can be solved with general-purpose ILP solvers,
as well as a specialized branch-and-bound algorithm where lower bounds are computed by exploiting an
existing branch-and-bound algorithm for a simpler version of the problem. Computational results on ran-
domly generated instances show that for 80 jobs or more the problem is difficult to solve for ILP solvers;
this confirms the particular hardness of scheduling problems requiring total tardiness minimization. Our
branch-and-bound algorithm was faster than a state-of-the-art ILP solver on almost all instances and
provided small primal-dual gaps when the allotted computing time was made short enough to prevent
the computation of optimal solutions.

Acknowledgments. The authors acknowledge the support of ACSU - Associazione Cremasca Studi
Universitari to the OptLab, the Operations Research Laboratory of the University of Milan, where most
part of this work was carried out. They also acknowledge the joint support of PA Digitale srl and Regione
Lombardia through the programme “Dote Ricerca Applicata”.

References

[1] B. Chen, C.N. Potts and G.J. Woeginger, A Review of Machine Scheduling: Complexity, Algorithms
and Approximability, Handbook of Combinatorial Optimization, D.-Z. Du and P.M. Pardalos (Eds),
1998 Kluwer Academic Publishers.

[2] C. Koulamas, The single-machine total tardiness scheduling problem: Review and extensions, Euro-
pean Journal of Operational Research 202 (2010) 1-7.

[3] E.L. Lawler, A pseudopolynomial algorithm for sequencing jobs to minimize total tardiness, Annals
of Discrete Mathematics 1 (1977) 331–342.

[4] R. Tadei, A. Grosso and F. Della Croce, Finding the Pareto-optima for the total and maximum
tardiness single machine problem, Discrete Applied Mathematics 124 (2002) 117–126.

[5] H. Emmons, One-machine sequencing to minimize certain functions of job tardiness, Operations
Research 17 (1969) 701–715.

[6] C. Koulamas and G.J. Kyparisis, Single machine scheduling with release times, deadlines and tardi-
ness objectives, European Journal of Operational Research 133 (2001) 447–453.

[7] D. Shabtay, N. Gaspar and M. Kaspi, A survey on offline scheduling with rejection, Journal of
Scheduling 16 (2013) 3–28.

[8] X. Wang, L. Tang, A hybrid metaheuristic for the prize-collecting single machine scheduling problem
with sequence-dependent setup times, Computers & Operations Research 37 (2010) 1624–1640.

[9] Z.L. Chen and W.B. Powell, Solving Parallel Machine Scheduling Problems by Column Generation,
INFORMS Journal on Computing, 11:1 (1999) 78–94.

[10] J.M. van den Akker, J.A. Hoogeveen and S.L. van de Velde, Parallel Machine Scheduling by Column
Generation, Operations Research 47:6 (1999) 862–872 .

14

[11] Z. Bilgintürk, C. Oǧuz and S. Salman, Order acceptance and scheduling decisions in make-to-order
systems, 5th Multidisciplinary International Scheduling Conference: Theory and Applications (2007),
Paris, France.

[12] C. Oǧuz, S. Salman and Z. Bilgintürk, Order acceptance and scheduling decisions in make-to-order
systems, International Journal of Production Economics, 125:1 (2010) 200–211.

[13] F.T. Nobibon and R. Leus, Exact algorithms for a generalization of the order acceptance and schedul-
ing problem in a single-machine environment, Computers and Operations Research 38:10 (2011)
367–378.

[14] J.-B. Lasserre , M. Queyranne, Generic scheduling polyhedral and a new mixed- integer formula-
tion for single-machine scheduling, Proceedings of the 2nd Integer Programming and Combinatorial
Optimization Conference (1992).

[15] J.P. de Sousa and L.A. Wolsey, A time-indexed formulation of non-preemptive single-machine
scheduling problems, Mathematical Programming 54 (1992) 353–367.

[16] N. Bianchessi, G. Righini, Planning and scheduling algorithms for the COSMO-SkyMed constellation,
Aerospace Science and Technology 12 (2008) 535–544.

15

