
it provides the largest improvement to the objective value (i.e., where it yields the minimum increase in
tardiness) and only if the insertion yields an improvement. When no more jobs can be profitably inserted,
the current solution provides an upper bound. A pseudo-code is shown in Algorithm 1.

Algorithm 1 Heuristic(f, J, J
f

,�, p, d, d̄)

J
0

= {j 2 J \ J
f

: f
j

= 0};
J
1

= J
f

[{j 2 J \ J
f

: f
j

= 1};
Compute the minimum tardiness solution x for J

1

using the algorithm of Tadei et al. [4];
J := J \ (J

0

[J
1

);
Sort J by non-increasing order of �

j

/p
j

;
while J 6= ; do

j⇤ := argmax
j2J

�
j

p
j

;

Compute the best feasible position p⇤ for j⇤ in x with respect to the total tardiness;
if p⇤ exists and improves x then

Insert j⇤ in position p⇤ in x;
end if

J := J \ {j⇤};
end while

Compute the minimum tardiness solution with the set of jobs in x using the algorithm of Tadei et
al. [4];
Return x;

4.4 The branch-and-bound algorithm

A best incumbent upper bound is indicated by UB⇤. It is initialized with the heuristic algorithm shown
in Section 4.3 run on the whole instance with no fixed jobs.

Branching. We indicate by 0-nodes and 1-nodes the sub-problems of the branch-and-bound tree gen-
erated by setting a variable f

j

to 0 and to 1, respectively. We process each sub-problem ⌫ (node, in the
remainder) of the branch-and-bound tree as follows.

• If ⌫ is a 1-node then solve the minimum tardiness sub-problem; otherwise keep the same optimal
solution of the predecessor node. Let T ⇤ be the minimum tardiness.

• If ⌫ is a 0-node, then solve the prize maximization sub-problem (5); otherwise keep the same optimal
solution of the predecessor node. Let P ⇤ be the maximum prize.

• Set the lower bound LB⌫ := T ⇤ � P ⇤.

• Compute an upper bound UB⌫ with Algorithm 1.

• If UB⌫ < UB⇤, then update the best incumbent upper bound UB⇤.

• If LB⌫ � UB⇤, then prune ⌫.

• If ⌫ has not been pruned, then branch: select the job j⇤ 2 J \ (J
0

[J
1

) that belongs to the optimal
solution of the prize maximization sub-problem (5) and has the largest �

j

/p
j

ratio. Then generate
two successor nodes by fixing f

j

⇤ either to 0 or to 1.

The branching rule aims at guaranteeing that the lower bound in the two successor nodes is larger than
in the predecessor node. In fact, setting f

j

⇤ = 1 makes an optimal solution of the minimum tardiness
sub-problem infeasible, while fixing f

j

⇤ = 0 makes an optimal solution of the maximum prize sub-problem
infeasible.

7

