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Abstract In the context of the Neyman-Rubin framework with binary treatment and outcome,
we devise and conduct a rich benchmark study whose general ambition is to find the best practices
to achieve good predictions of the CATE with machine learning techniques. The major part of our
work revolves around two questions: i) what is the most reliable metric to select the best model
among several competitors? We experimentally challenge the AUUC with the modified MSE
associated with the AIPW pseudo-outcome, to which we introduce an alternative formulation.
We compare them to multiple ground-truth-based metrics on synthetic datasets. ii) how do data
generation processes impact the performance of models? We design a special structure for the
benchmark and introduce axes of analysis to explore the global and local behaviours of several
models (essentially neural nets and random forests). Beyond the validity of our conclusions,
another important ambition of our work is to provide valuable data and methods to be included
in the demanding and unified standard of model assessment we need to adopt as a research
community in order to deepen our understanding of the CATE task and improve our models.

http://www.sjscience.org/article?id=809


Contents

1 Introduction 3
1.1 Set-up and notations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.2 The ideal task: deriving the causal structure of a dataset . . . . . . . . . . . . . . . 4
1.3 The CATE problem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
1.4 Assumptions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2 Review of the state of the art 6
2.1 Metrics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2.1.1 Wishlist for a metric . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
2.1.2 The Area Under the Uplift Curve (AUUC) . . . . . . . . . . . . . . . . . . . 7
2.1.3 IPW pseudo-outcome and modified MSE . . . . . . . . . . . . . . . . . . . . 7
2.1.4 AIPW pseudo-outcome . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
2.1.5 The R-metric . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
2.1.6 The maximum expected outcome (MEO) . . . . . . . . . . . . . . . . . . . . 9
2.1.7 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

2.2 Models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
2.2.1 Meta-learners : the T-learner . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
2.2.2 Meta-learners : the S-learner . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
2.2.3 Meta-learners : the X-learner . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
2.2.4 Meta-learners : the Z-learner . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
2.2.5 Ad-hoc models : the R-learner . . . . . . . . . . . . . . . . . . . . . . . . . . 11
2.2.6 Ad-hoc random forests . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
2.2.7 Meta-learners: the DR-learner . . . . . . . . . . . . . . . . . . . . . . . . . . 11
2.2.8 Ad-hoc models: SMITE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
2.2.9 Ad-hoc models: Uplift SVM . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
2.2.10 Ad-hoc models : learning-to-rank algorithms . . . . . . . . . . . . . . . . . . 12
2.2.11 Ad-hoc models : ECM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

2.3 Experimental set-up . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

3 A new expression of the AIPW estimator 13
3.1 Insights on a∗ and V ∗ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

4 Models based on L̂∗ 16
4.1 Deep Uplift Regressors: DUR1 and DUR2 . . . . . . . . . . . . . . . . . . . . . . . . 16
4.2 SMITE∗ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

5 Experimental set-up 16
5.1 Data generation processes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

5.1.1 General parameters of the DGPs . . . . . . . . . . . . . . . . . . . . . . . . . 17
5.1.2 Causal-structure-based DGPs . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
5.1.3 DGPs from the literature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

5.2 Simulated DGPs vs. the reality . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
5.3 Models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
5.4 Experimental comparison of metrics . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

5.4.1 Reference ground-truth-based metrics . . . . . . . . . . . . . . . . . . . . . . 21
5.4.2 Principle of the comparison . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
5.4.3 Remarks and improvements for future works . . . . . . . . . . . . . . . . . . 22

1



5.5 Computing L̂∗ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
5.6 Training models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

6 Results 23
6.1 V ∗ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
6.2 L̂∗ vs. the AUUC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
6.3 Models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

6.3.1 General results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
6.3.2 DGP breakdown . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
6.3.3 Model performance as a function of the overlapping of causal populations . . 31

7 What is the best model? 32

8 Conclusion 33
8.1 Take away . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
8.2 Future works and open questions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

A Ground truth of the DGPs of the literature 36
A.1 Response-based DG1 of type 1. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
A.2 Response-based DGP of type 2. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

A.2.1 Proof for τ(x) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
A.2.2 Sketch of proof for p(R|x) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
A.2.3 Sketch of proof for p(S|x) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

B Additional technical details 39
B.1 Neural networks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
B.2 Uplift random forests . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
B.3 Early stop in 5-fold cross validation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

2



1 Introduction

We study randomized controlled trials with a binary treatment and a binary outcome. A population
is randomly divided into two groups and only one receives the treatment. The negative or positive
outcome of this assignment policy is then observed at the individual level. Our goal is to ascertain
the causal effect of the treatment for any particular profile. How likely is an individual with given
characteristics to benefit from the treatment? Will treating him/her change his/her natural course?

Being able to answer this question opens up a large field of applications. In the medical domain, it
may considerably strengthen the therapeutic armamentarium by going beyond the standard analysis
that only assesses the overall efficiency of a treatment. Indeed, even if a treatment displays a weak
average effect, the comprehensive identification of the profile-based response of patients might still
reveal that it is an efficient solution for a specific subset of the population. In marketing, it would
allow to accurately target customers that are prone to buy a product, improving the company’s
return on investment while reducing the amount of spamming from the consumer’s perspective. For
example, it has been used in Barack Obama’s campaign in order to target passive supporters likely
to be persuaded to go to the polling station and vote on election day, with apparent success.

We are practitioners interested mainly in the applications of causal inference to marketing using
machine learning techniques. In this article, we report all of our work, ideas and findings that
originated from the question: what is, in practice, the best machine learning model for the problem?
The answer we are looking for is of experimental nature and led us to thoroughly consider aspects
that are generally secondary in state of the art articles, which introduce, for instance, new models.
Precisely, we focus on two fundamental questions:

• How to compare models with each other and select the best one? We considered alternatives
to the standard metric of the field (the AUUC) and designed an experimental way to compare
their merits.

• How to test the models and better understand their strengths and weaknesses? We designed
a challenging benchmark and introduced a way to analyze the local behaviour of models.
Throughout this process, we also make our own propositions in terms of metrics and models.

We developed all the code in Python, which is publicly available at https://github.com/SRC-
data/uplift adway.

Because of the diversity of causal inference applications and the way scientific publishing is orga-
nized, the topic is unfortunately scattered throughout many different fields under different names.
However, to the best of our understanding, there is no field-induced specificity of the problem that
could justify such a siloed situation. Consequently, the state-of-the-art is hard to monitor and it
slows down the diffusion of ideas between fields. In this article oriented towards experimentation, we
aim to lay the foundation of a cross-field experimental standard for the topic, which may interest all
its contributors. We are already aware of some improvements to our proposals, and we are inevitably
ignorant of others since the literature is vast. We, therefore, hope that this article will be the vehicle
of a collective discussion resulting in a global consensus about experimental standards, whether the
ones we propose initially or not, for science’s sake.

1.1 Set-up and notations

We work with a dataset in which every individual, besides his features, has two labels denoting
whether he received the treatment and the observed outcome. We denote:

• X the Ω-valued random variable (Ω ⊂ Rd) representing the features of an individual.
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• T the treatment label, T = 1 meaning the treatment has been assigned and T = 0 otherwise.

• Y the outcome label, Y = 1 meaning the positive outcome has been observed and Y = 0
otherwise.

We denote respectively Yi(1) and Yi(0) the outcomes that would be observed if the treatment
was assigned or not to the individual i. {Yi(0), Yi(1)} fully defines the effect of the treatment on the
individual i and we have Yi = TiYi(1) + (1− Ti)Yi(0).

We refer to the population group of treated individuals as the test population and the rest as
the control population.

We denote w(x) the propensity, the probability to assign the treatment to individuals of profile
x: w(x) = P (T = 1|X = x).

We denote µ1(x) and µ0(x) the response surfaces, i.e. E[Y (1)|X = x] and E[Y (0)|X = x].
We denote N , NT and NC the size of the dataset, of the test population and of the control

population (N = NT +NC).
In the following, unobservable quantities will be displayed in green.

1.2 The ideal task: deriving the causal structure of a dataset

In this section, we want to highlight what we coin the causal structure of a dataset. Deriving the
causal structure of a dataset leads, in our opinion, to the highest level of understanding of the causal
effect of the treatment. Importantly, this objective is not the one that will be pursued in the rest
of the article. However, it emphasizes an underlying structure of the problem that will be yet useful
in interpreting the results and in the design of our benchmark.

The causal structure is a specific concept to the case of binary treatment and outcome. Here,
individuals fall into one of four mutually exclusive categories which fully describes their behaviour:

• Individuals such that {Yi(0), Yi(1)} = {0, 1} are called responders (R). They benefit from the
treatment, i.e. the positive outcome happens only when they have been treated.

• Individuals such that {Yi(0), Yi(1)} = {1, 1} are called survivors (S). The treatment does not
affect their behaviour and they always display a positive outcome.

• Individuals such that {Yi(0), Yi(1)} = {0, 0} are called doomed (D). The treatment does not
affect their behaviour and they always display a negative outcome.

• Individuals such that {Yi(0), Yi(1)} = {1, 0} are called anti-responders (A). The treatment has
a deleterious effect on them: they display a positive outcome only when they are not treated.

These categories form a partition of the dataset: any population can be described as a mixture of
these four causal sub-populations. Denoting πk their relative abundance and fk(x) their distribution
(with k ∈ {R,S,D,A}), we have P (X = x) = πRfR(x) + πSfS(x) + πDfD(x) + πAfA(x). We define
then the causal structure of a dataset C as:

C = {(πR, fR), (πS , fS), (πD, fD), (πA, fA)}. (1)

We consider that the explicit knowledge of C constitutes the highest level of representation of the
causal information, from which all other quantities of interest can be computed and interpreted.
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1.3 The CATE problem

In this article, we focus on determining the optimal and individual treatment assignment policy.
Let us consider a marketing application where it costs c(x) to advertise a product of price q(x)
to customers of characteristics x. A customer should be treated if the gain G(1) when treated is
expected to be greater than the gain G(0) when not treated. We have:

E[G(1)|x] = q(x)E[Y (1)|x]− c(x)

E[G(0)|x] = q(x)E[Y (0)|x]

E[G(1)|x] > E[G(0)|x]⇒ E[Y (1)|x]− E[Y (0)|x] > c(x)/q(x) (2)

Thus, the optimal assignment policy boils down to the estimation of the quantity:

τ(x) = E[Y (1)|x]− E[Y (0)|x], (3)

followed by the selection of individuals for whom τ is greater than a certain threshold.
This quantity was introduced first by (Rubin 1974 [1]) in the Journal of Educational Psychology

under the name of causal effect. Since then, it has spread across many different fields (such as
epidemiology, econometrics, marketing, statistics or machine learning) under different names: con-
ditional average treatment effect, individual treatment effect, heterogeneous treatment effect, uplift,
net score, incremental response, etc. In this article, we will use the conditional average treatment ef-
fect (CATE) as the reference name for τ , since we consider it describes better its standard expression
3.

As suggested in the previous subsection, though, the causal structure perspective could shed
new light on the CATE and provide another interpretation, from which yet another name could be
derived. Indeed, by marginalizing over the causal populations, we have:

E[Y (1)|x] = E[Y (1)|x,R]× p(R|x) + E[Y (1)|x, S]× p(S|x)

+E[Y (1)|x,D]× p(D|x) + E[Y (1)|x,A]× p(A|x)

= 1× p(R|x) + 1× p(S|x) + 0× p(D|x) + 0× p(A|x)

= p(R|x) + p(S|x).

E[Y (0)|x] = p(S|x) + p(A|x) similarly.

So that:
τ(x) = p(R|x)− p(A|x). (4)

Thus, the CATE can also be understood as the local difference between causal population densities.

1.4 Assumptions

In this study of the CATE, we require the following points:

• we assume unconfoundedness {Y (0), Y (1)} ⊥ T |X. Under this condition, we can identify the
response surfaces: we have µ1(x) = E[Y = 1|T = 1, x] and µ0(x) = E[Y = 1|T = 0, x]. This
assumption also implies that each causal population is equally distributed between the test
and control populations. This assumption is guaranteed in randomized controlled trials but
not in observational studies.

• we assume that 0 < w(x) < 1: we restrict the study of the CATE to the region where
observations are available for both the test and control populations.
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• we also assume SUTVA (stable unit treatment value assumption), which requires that each
sample i is not affected by the treatment received by other samples.

• last, we assume that the propensity w(x) is explicitly known. This is undoubtedly wishful
thinking in the context of medical data which mostly come from observational studies, but it
is likely for marketing applications where marketers can freely plan their targeting strategy. In
the general case where the propensity is unknown, an estimate of the propensity ŵ(x) needs
to be computed first, and it should replace every occurrence of w(x) in what follows.

2 Review of the state of the art

We want to review three aspects of state of the art: the metrics of the problem, the models and the
experimental set-up.

2.1 Metrics

A fundamental difficulty of the problem is that it is impossible to observe {Yi(0), Yi(1)} for an
individual i: treating him and thus “revealing” Yi(1) prevents us to ever observe Yi(0), i.e. to
know what would have happened if we had not treated him. We therefore cannot know his class for
certain: we rather always face an undecidable choice between two classes. For instance, if we know
that Yi(1) = 0, we can be sure that i is neither an anti-responder nor a survivor, but cannot decide
whether he is a responder or a doomed. Similarly, τ(xi) cannot be observed. In terms of machine
learning, this difficulty is reflected in the design of a metric.

2.1.1 Wishlist for a metric

Let us start by laying down what we consider the desirable properties of a metric M for the CATE
problem:

1. Calibration: the ground truth should achieve the optimal score, i.e. τ = arg maxτ̂M(τ̂).
Thus, improving the score of a prediction indeed implies that it is somewhat closer to the
ground truth and is a worthy goal indeed.

2. Rewarding correct CATE values: as shown in 2, the user decides the assignment policy
by comparing the CATE with a certain threshold. Thus, the metric should guarantee that
CATE estimations are correct.

3. Differentiability The metric should be differentiable so that a robust optimization process
can be designed. Additionally, it should have good smoothness properties.

Then, this metric would be ideally used at three stages of the machine learning framework:

1. as an objective function for model training,

2. as a relative measure of the performance of trained models that enables comparison and selec-
tion of the best ones,

3. and as an absolute measure of performance of selected models that will make sense to their
end users.
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2.1.2 The Area Under the Uplift Curve (AUUC)

Introduced in [2] as a natural extension of lift curves to the CATE problem, the Area Under the
Uplift Curve (AUUC) is the most common metric used in the literature, also referred to as Qini
coefficient. It aims at assessing whether a prediction ranks the samples correctly. The general idea is
to maximize the area under the curve obtained when subtracting the lift curves (i.e. the cumulative
fraction of positive outcomes detected as we treat samples in decreasing order of predicted CATE)
drawn respectively on the test and the control populations. Some minor variations in its definition
can be found in the literature (see [3] for a summary). Here we will work with the definition used in
[4]. Be Γk(τ̂) the set of the k first samples of the highest CATE as predicted by a model τ̂ . Then :

AUUC(τ̂) =

N∑
k=1

V (τ̂ , k) (5)

with V (τ̂ , k) =
∑

i∈Γk(τ̂)

Yi

(
Ti
NT
− 1− Ti

NC

)
(6)

How does the AUUC fare with the wishlist of the previous subsection (2.1.1)?

Rewarding correct CATE values The AUUC is a rank metric. If τ̂ is an estimator of the
CATE, any transformation f(τ̂) where f is an increasing function will have the same AUUC as τ̂ .
Therefore, it does not provide the guarantees the user expects in order to achieve optimal assignment
policy.

Calibration The AUUC is calibrated in the limit of a large number of samples [5]. There is no
reason why it is calibrated in the general case and our benchmark does provide examples where the
trained model τ̂ is such that AUUC(τ̂) > AUUC(τ). As far as we know, the convergence of the
AUUC has not been theoretically studied.

Differentiability The AUUC is not differentiable.
Therefore, the standard use of the AUUC in the field can be challenged. Different ideas that

could be used as alternatives already stem in the literature, and we want to shortly discuss them.

2.1.3 IPW pseudo-outcome and modified MSE

This idea stems from the literature on the average treatment effect (ATE), defined as E[Y |T =
1] − E[Y |T = 0]. Horvitz and Thompson [6] showed in 1952 that the ATE could be estimated
through the so-called IPW (inverse propensity weighting) estimator:

ˆATEIPW =
1

N

∑
Y ∗i

with Y ∗i = Yi(
Ti
ŵi
− 1− Ti

1− ŵi
)

In [7], Athey et al. notice that Y ∗ is an unbiased estimator of the CATE, i.e. E[Y ∗|x] = τ(x), so
that Y ∗ is a pseudo-outcome that could be “repurposed” as a target for regressors in lieu of τ . In
particular, the authors focus on the “modified MSE” metric:

L̂(τ̂) =
1

N

∑
(τ̂(Xi)− Y ∗i )2. (7)
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Calibration As the AUUC, the modified MSE is asymptotically calibrated. Indeed, the modified
MSE and the true MSE, defined as: L(τ̂) = 1

N

∑
(τ̂(Xi)− τ(Xi))

2, relate in the following way:

L̂(τ̂) =
1

N

∑
((τ̂(Xi)− τ(Xi)) + (τ(Xi)− Y ∗i ))2 (8)

= L(τ̂)− 2

N

∑
τ̂(Xi)(τ(Xi)− Y ∗i ) + C, (9)

where C is a term that depends only on the dataset and the DGP (data generation processes). The
second term is asymptotically zero. Indeed:

1

N

∑
τ̂(Xi)(τ(Xi)− Y ∗i )→ E[τ̂(τ − Y ∗)] (10)

E[τ̂(τ − Y ∗)] = E[E[τ̂(τ − Y ∗)]|X]

= E[τ̂(X)E[τ − Y ∗|X]] since τ̂ is just a function of X

= E[τ̂(X)× 0] = 0.

Thus, L̂ allows to select the true model τ in the limit of a large number of samples. The quality of L̂
as an approximation of L depends on how fast the term 1

N

∑
τ̂(Xi)(τ(Xi)− Y ∗i ) converges to zero.

It is clear that the ground truth is not the optimum of the modified MSE in the general case: it
would imply that Y ∗ is actually a perfect estimator, i.e. Y ∗|X = τ(X).

Rewarding correct CATE values The focus of the modified MSE is indeed on CATE values.

Differentiability The modified MSE is differentiable.

2.1.4 AIPW pseudo-outcome

Introduced in [8], the AIPW estimator (for “augmented IPW”) is a pseudo-outcome that relies on
a preliminary estimation of the response surfaces µ̂1 and µ̂0. It is defined as:

φ∗i = µ̂1(xi)− µ̂0(xi) + T
Y − µ̂1(xi)

ŵ(xi)
− (1− T )

Y − µ̂0(xi)

1− ŵ(xi)
(11)

It is also referred as the doubly-robust (DR) estimator: indeed, it can be shown that it is consistent
if either µ̂1 and µ̂0 or ŵ are consistent. The IPW pseudo-outcome can be seen as a particular case
of the AIPW with µ̂1 = µ̂0 = 0. As for the IPW, the modified MSE

L̂(τ̂) =
1

N

∑
(τ̂(Xi)− φ∗i )2 (12)

has desirable properties for the CATE task. Error bounds of the AIPW estimator are derived in [9]

2.1.5 The R-metric

In [10], Nie and Wager introduces as a loss a term that could be clearly used as well as a general
metric for the CATE problem. Relying on Robinson decomposition [11], the R-metric is defined as:

R(τ̂) =
1

N

∑
[(Yi − E[Y |xi])− (Ti − w(xi))τ̂(xi)]

2,

which is to be minimized. The R-metric includes the unobservable term E[Y |xi] which needs to be
estimated as well as possible in a preliminary step.
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Calibration As showed up in [11]:

τ = argminτ̂ E[(Y − E[Y |x]− (T − w(x))τ̂(x))2] (13)

so that the R-metric is asymptotically calibrated. It is clear however that the R-metric is not
calibrated in general, if only through its dependence on the estimation of an unobserved term. Nie
et al. compute error bounds in the case of prior knowledge of E[Y |x] and w(x).

Rewarding correct CATE values The R-metric focusses on CATE values.

Differentiability The R-metric is differentiable.

2.1.6 The maximum expected outcome (MEO)

Introduced in the context of multi-treatment by [12], this new metric interestingly characterizes the
optimal treatment as the one whose recommendations generate the maximum outcome. By denoting
T best(xi, τ̂) the optimal treatment for sample i according to the model τ̂ , the MEO metric reads in
its general form as:

MEO(τ̂) = E[Y |T = T best(x, τ̂)] (14)

which is to be maximized. Let us assume for simplicity that the assignment policy decided by the
user is to treat individuals whose CATE is above a certain threshold s. Then, a simple reworking of
eq 2.3 of the original article shows that in our case of a binary treatment, the MEO can be simply
computed in practice as:

MEO(τ̂) =
1

N
[
∑

τ̂(xi)≥s

YiTi
wi

+
∑

τ̂(xi)<s

Yi(1− Ti)
1− wi

] (15)

We can immediately point out a drawback of this metric: samples whose recommended treatment
differs from the received treatment do not contribute to it. For instance, the value of the outcome
of a sample such that τ̂(xi) ≥ s and Ti = 0 plays no role. This loss of information is certainly
detrimental in practice.

Calibration The MEO is asymptotically calibrated as a consequence of 2. However, as the other
metrics, it is not true in general. In practice, a model trained with the MEO will assign a CATE

to a sampling depending on max(YiTi

wi
, Yi(1−Ti)

1−wi
) and we can build datasets where outliers such that

YiTi = 1 while τ(xi) < s will allow models that wrongly predicts τ̂(xi) > s to perform better than
the true model.

Rewarding correct CATE values The MEO only controls where a sample stands with respect
to the threshold of interest. Although minimal, this constraint is enough to meet the primary
expectation of the practitioner, which is to decide an assignment policy.

Differentiability The MEO is not differentiable.
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2.1.7 Conclusion

Through the lens of our three criteria, the AUUC should not be the standard of the field. The
existing alternatives (discussed above) have more desirable properties. However, they depend on a
consistent preliminary estimation of additional terms, which may be problematic in practice, whereas
the AUUC can be directly computed from the data. Comparing these imperfect metrics and deciding
which is the most reliable in a practical case remains a work to be done.

2.2 Models

CATE models are classically split into two categories:

• Meta-learners which estimate the CATE through a peculiar use of unmodified off-the-shelf
models.

• Ad-hoc models which are specifically designed for the task.

2.2.1 Meta-learners : the T-learner

The T-learner consists in a standard training of two off-the-shelf classifiers (with standard loss
functions) on the control and test populations to get estimates of µ̂1(x) and µ̂0(x). The CATE is
then estimated as τ̂(x) = µ̂1(x)− µ̂0(x). It is considered the baseline approach of the field.

2.2.2 Meta-learners : the S-learner

The S-learner approach treats T as a regular variable. It consists in training an off-the-shelf classifier
on the whole dataset to estimate µ̂(x, t) = E[Y |X = x, T = t]. The CATE is then estimated as
τ̂(x) = µ̂(x, 1)− µ̂(x, 0).

2.2.3 Meta-learners : the X-learner

The X-learner [13] extends the T-learner. After a preliminary estimation of µ̂1(x) and µ̂0(x), proxys
of the CATE, D1 and D0, are generated by combining the observation with its estimated counter-
factual for each sample:

D1
i = Yi(1)− µ̂0(Xi) if Ti = 1 (16)

D0
i = µ̂1(Xi)− Yi(0) if Ti = 0 (17)

Two regressors are then trained to learn:

τ̂1(x) = E[D1|X = x] (18)

τ̂0(x) = E[D0|X = x] (19)

The CATE is eventually computed by combining these outputs with:

τ̂(x) = g(x)τ̂1(x) + (1− g(x))τ̂0(x) (20)

where g : Ω → [0, 1] is a weighting function that can be freely chosen. The authors recommend to
use the propensity as g.
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2.2.4 Meta-learners : the Z-learner

The Z-learner [14] is a model of mostly theoretical interest. It is only applicable when w(x) = 1
2 . In

that case, one can show that the binary variable Z = Y T + (1− Y )(1− T ) is such that:

τ(x) = 2E[Z|X = x]− 1. (21)

Therefore the CATE can be estimated through a single classification of Z on the whole dataset.

2.2.5 Ad-hoc models : the R-learner

The R-learner [10] uses the dedicated loss function presented in 2.1.5. After a preliminary estimation
of m(x) = E[Y |X = x], the CATE is estimated through this optimization task:

τ̂(·) = arg min
τ̂

{
1

n

n∑
i=1

((Yi − m̂(Xi))

− (Ti)− ŵ(Xi))τ̂(Xi))
2

+ Λn(τ̂(·))

} (22)

where Λn(τ̂(·)) is a regularizer of choice.

2.2.6 Ad-hoc random forests

Random forests can be described as an iterative mechanism that aims at splitting the dataset into
nodes of maximal purity. Many adaptations of this principle to the CATE task have been proposed.
First, several concepts of node purity have been introduced. By denoting p̂ and q̂ the estimates of
E[Y |T = 1] and E[Y |T = 0] at the node level, the following measures of purity have been tried:

• KL(p̂, q̂) = p̂ ln( p̂q̂ ) + (1− p̂) ln( 1−p̂
1−q̂ ) [15, 16]

• E(p̂, q̂) = (p̂− q̂)2 [15, 16]

• χ2(p̂, q̂) = (p̂−q̂)2
q̂(1−q̂) [15]

• CTS(p̂, q̂) = max(p̂, q̂) [12]

Several refinements have been proposed in the literature. So ltys et al. [16] introduce solutions
to further weight these quantities in order to compensate for possible imbalance between test and
control populations within a node. Su et al. [17] derive a splitting rule through a maximum log-
likelihood argument relying on the prior Y |T ∼ N ((1−T )a+Tb, σ2) at the node level. Athey et al.
[18, 7, 19] work with standard random forest regressors using Y ∗ as a target and introduce further
refinements about the proper node-level sampling that should be used to estimate the CATE and
to choose the next split. Guelman et al. [20] propose a way to improve the selection of candidate
features for the split.

2.2.7 Meta-learners: the DR-learner

DR-learners are regressors working with the AIPW pseudo-outcome presented in 2.1.4. They have
gained a lot of attention in the last years. Among a vast literature, we single out those two references:
in [21], Chernozhukov et al. demonstrates the benefit of using a proper sample splitting technique
(“cross-fitting”) to estimate the pseudo-outcome and train the DR-learner. In [9], Kennedy studies
the efficiency of the DR-learner and derives error bounds.
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2.2.8 Ad-hoc models: SMITE

SMITE [22] is an interesting neural net method relying on a peculiar “siamese” architecture which
outputs estimates of µ1(x) and µ0(x). The loss function is:

L(µ̂1, µ̂0, λ) =
∑
i

(µ̂1(xi)− µ̂0(xi)− Y ∗i )2

+λ
∑
i

[Yi log(µ̂T (xi)) + (1− Y ) log(1− µ̂T (xi))]

with µ̂T (xi) = Tiµ̂1(xi) + (1− Ti)µ̂0(xi)

The second term of this loss function is a binary cross-entropy term that checks the quality of µ̂1

and µ̂0 as estimates of Y. The first term is the Y ∗-based modified MSE which checks the quality of
their difference as an estimate of the CATE. λ is a trade-off constant that needs to be fine-tuned
through cross-validation.

2.2.9 Ad-hoc models: Uplift SVM

The goal of this approach is to determine the parameters of two parallel hyperplanes H1 : kTx = b1
and H2 : kTx = b2 so that the following prediction rules:

τ̂(x) =

 1 if kTx ≥ max(b1, b2)
−1 if kTx ≤ min(b1, b2)
0 otherwise

lead to as good results as possible. The problem is then solved as quadratic optimization under
constraints.

2.2.10 Ad-hoc models : learning-to-rank algorithms

LambdaMART LambdaMART [23] is an optimization technique that can process non-differentiable
ranking functions. In [3], the authors finds an appropriate formulation of the AUUC that can be fed
to LambdaMART. By denoting πτ̂ (j) the rank of sample j in the decreasing ordering of the dataset
induced by model τ̂ , we have:

AUUC(τ̂) =

N∑
i=1

(N − i+ 1)g(π−1
τ̂ (i)) (23)

with

g(i) = Yi(
Ti
NT
− (1− Ti)

NC
) (24)

AUUC-max In [4], Betlei et al. introduce the AUUC-max strategy: they derive a surrogate of
the AUUC that can be used as a learning objective by a large class of models.

2.2.11 Ad-hoc models : ECM

Introduced in [24], the goal of this algorithm is actually to infer the causal structure of the problem.
It is an evolution of the standard expectation-maximization algorithm in which causality constraints
have been injected. It is parametric and requires priors for causal populations distributions.
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There are also many other interesting algorithms that have been developed in the context of a
continuous outcome that may be adapted to the binary case or at least inspire new approaches. We
consider that BART [25], GANITE [26] and IPM [27] are especially noteworthy.

2.3 Experimental set-up

The field works with both real and simulated data. In the absence of known ground truth, we
consider that working with real data is not very useful to assess the pros and cons of CATE models.
We therefore focus on literature working with simulated data and review the various data generation
processes (DGP) they used. We found that all of them posits the response function, and do so in
two possible ways : either Y |X,T = 1(f(X) + Tg(X) + ε > 0) (where ε|X ∼ N (0, σ)) [20, 28] or
Y (x, T ) ∼ B(1, f(x) + Tg(x)) [29, 19, 10].

By looking at several uplift 2D maps generated with these DGPs, we are concerned that they
may be too easy and unlikely to test how CATE models will cope with the various difficulties a real
dataset might hold. Let us consider for instance the first DGP strategy through the lens of the causal
structure. If we temporarily omit the random term ε, we see that in this DGP the causal populations
are separable. For instance, the support of the responder distribution is {x|f(x) > 0 & f(x)+g(x) <
0} and does not intersect the survivor support which is {x|f(x) > 0 & f(x) + g(x) > 0}. The effect
of adding a random noise is to “blur” the boundaries of these domains, i.e. to create some overlap
along the boundaries. When the variance of this noise is low, the extent of this overlap is limited and
we might consider this DGP to be an easy case to model, according to our intuition that difficulty
lies in the overlap of causal populations. The form of f and g determines the connectedness of
supports and the shape of the boundaries. Positting linear functions will thus lead to connected
supports which are linearly separable, which we consider to be definitely not challenging enough.

In our case of binary treatment and outcome, there seems to be no systematic experimental
approach to assess how a model adapts to the different imbalances that a DGP might have. Such an
approach has been developed though in the case of continuous outcome: in [30], the authors list a set
of possible deviations from idealized experiments and proceed to the generation of 7700 scenarios to
investigate them. Such deviations include for instance the degree of non-linearity of functions used
in the DGP, the imbalance between treatment and control and the treatment effect heterogeneity.
We highly praise this work and think that such a demanding experimental standard needs to be
consensually developed and routinely used by researchers when proposing new models.

3 A new expression of the AIPW estimator

Introducing pseudo-outcomes for the CATE allows to tackle the problem through the angle of single-
variable regression. Our intuition is that this strategy is the most likely to eventually outperform
the T-learner. We were curious to find yet another pseudo-outcome to be used in a modified MSE
metric, different from the IPW pseudo-outcome Y ∗ (as Athey et al. already point that it is not an
optimal choice) or from the AIPW one φ (since it still resorts to a preliminary estimation of µ1 and
µ0).

As we have recalled in section 2.1.3, the practical efficiency of a modified MSE based on pseudo-
outcome V depends on how close to 0 (its asymptotic value) the term 1

N

∑
τ̂(Xi)(τ(Xi)−Vi) is. We

know from the law of large numbers that this property depends on VarV |X (besides the number of
samples). Therefore our goal is to find a consistent estimator with minimal variance. Our idea was
to improve on the IPW estimator Y ∗, which is already known as consistent.
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We denote

T ∗i =
Ti − w(xi)

w(xi)(1− w(xi))
so that Y ∗i = YiT

∗
i

We noticed that since E[T ∗|x] = 0, all variables of the form Va = (Y − a(x))T ∗ are also consistent
estimators of the CATE, where a(x) can be any function. We have

Var(Va|X = x) = Var(Y ∗|x)− 2aCov(Y T ∗, T ∗|x) + a2 Var(T ∗|x)

= Var(Y ∗|x)− 2aE[Y T ∗2|x] +
a2

w(x)(1− w(x))

The optimal way to adjust a to minimize the local variance of Va is :

a∗(x) = arg min Var(Va|X = x) = w(x)(1− w(x))E[Y T ∗2|x] (25)

Finally, the best estimator of this class is

V ∗i =
[
Yi − w(xi)(1− w(xi))E[Y T ∗2|xi]

]
T ∗i (26)

and
Var (V ∗|X = x) = Var(Y ∗|x)− w(x)(1− w(x)E2[Y T ∗2|x] (27)

V ∗ can be estimated by learning â∗ through a regression on the observable Ai = w(xi)(1 −
w(xi))YiT

∗2
i .

We can eventually use

L̂∗(τ̂) =
1

N

∑
(τ̂(xi)− V̂ ∗i )2 (28)

as a general metric for the problem.
This enriches our arsenal of pseudo-outcomes: Y ∗ can be computed directly from the data (again,

assuming w is known), the R-metric requires a preliminary classification of E[Y |x], φ requires two
preliminary classifications of the response surfaces and thus V ∗ requires a preliminary regression of
a∗.

3.1 Insights on a∗ and V ∗

Range of a∗. By marginalizing (29) over T, we get:

a∗(x) = (1− w(x))µ1(x) + w(x)µ0(x) (29)

It can immediately be seen that a∗ belongs to [0,1]. Therefore, within this class of consistent
estimators, Y ∗ = V0 can be seen as an “extreme” fixed choice.

Link with the variable Z (presented in 2.2.4) It is easy to check than when w = 1
2 , we have

V 1
2

= 2Z − 1. Z can therefore be seen as deriving from an “agnostic” fixed choice within our class
of estimators.
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Connection with the AIPW pseudo-toutcome Starting from 29, after simple manipulations
we can rewrite V ∗ as :

V ∗i = µ1(xi)− µ0(xi) + T
Y − µ1(xi)

w(xi)
− (1− T )

Y − µ0(xi)

1− w(xi)
(30)

It is in fact no other than the known form of the AIPW pseudo-outcome. Then V ∗ is not essentially
new. However, our derivation of V ∗ provides a new way to estimate it with a unique regression of a∗

(known to belong to [0,1]) on the whole dataset rather than two separate classifications of Y |T on
the test and control populations. Consistent with our hope that the pseudo-outcome strategy can
prevail on the T-learner for the CATE task, our new expression of the AIPW estimator may bring
the same kind of benefits to model that rely on it and in a context of a general metric for the CATE
problem.

The two-classifier form of the pseudo-outcome originates from the ATE problem. This new form
can thus be used as well for the ATE task:

ÂTE =
1

N

∑
(Yi − â∗i )T ∗i (31)

Last, although the context of our work is binary outcome, it is important to notice than our
expression can be applied to the general case as well.

Properties and interpretation of Var (V ∗|x) Although V ∗ has been extensively studied as the
AIPW pseudo-outcome, we wish to highlight some simple properties which we consider of practical
interest.

By marginalizing (27) over T, we can derive this simple expression :

Var(V ∗|x) =
µ1(x)(1− µ1(x))

w(x)
+
µ0(x)(1− µ0(x))

1− w(x)
(32)

It can be seen immediately that

Var(V ∗|x) = 0⇐⇒ (µ1(x), µ0(x)) ∈ {0, 1}2

V ∗ |X is a perfect estimator when there is only one type of causal population at X.
It can be seen also that the maximum of V ∗ is 1

4w(x)(1−w(x)) and is reached when µ1(x) = µ0(x) =
1
2 , which indicates a somewhat balanced mix of causal populations. With for instance w(x) = 0.3,
the worst-case value of Var (V ∗|x) is therefore 1.19, which one may consider too high for an estimator
of the CATE, i.e. a quantity that belongs to [-1,1]. Therefore, the CATE problem has not been
reduced to a mere regression problem yet: further denoising of the V ∗ signal is still necessary.

Finally, since the minima of Var (V ∗|x) are reached only in the case of pure causal populations
and the maximum is reached in balanced and mixed situations, we could interpret

η(x) =
√

4w(x)(1− w(x))Var (V ∗|x) ∈ [0, 1] (33)

as an index of the overlapping of causal populations. We will use it as such later when analysing
the results of our benchmark.
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4 Models based on L̂∗

4.1 Deep Uplift Regressors: DUR1 and DUR2

Consistent with our understanding that the local variance of V ∗ is a noise that should be further
mitigated in order to learn the CATE, we are curious to test a DR-learner with a regularization that
controls the gradient of the predicted model. We consider therefore the two following loss functions:

Loss1(τ̂) = L̂∗(τ̂) +
λ

N

∑
i

||gradxi(τ̂)||1 (34)

Loss2(τ̂) = L̂∗(τ̂) +
λ

N

∑
i

||gradxi(τ̂)||2 (35)

where λ is a hyperparameter. This expression is in fact reminiscent of the Rudi-Osher-Fatemi
total variation denoising principle, which has been considerably developed in the context of image
processing (for instance [31]). We have not yet explored this body of knowledge, which may include
useful insights that could be translated to the CATE problem as well as well-specified models for
this type of losses (note though that, in this context of image processing, X is two-dimensional).
Here, for each of these losses, we simply used a feedforward neural network (MLP) with a tanh
activation at the output layer, since the output must belong to [-1,1] (additional technical details
are in Appendix B). We will refer to these models as DUR1 and DUR2.

4.2 SMITE∗

The loss function of SMITE presented in section 2.2.8 makes use of the pseudo outcome Y ∗. We
obviously suggest to replace it with V̂ ∗ as an immediate improvement of the model, which we call
SMITE∗. The loss function becomes:

L∗(µ̂1, µ̂0, λ) = L̂∗(µ̂1 − µ̂0) + λ
∑
i

Yi log(µ̂T (xi)) + (1− Y ) log(1− µ̂T (xi))

5 Experimental set-up

5.1 Data generation processes

Our goal is to build a rich benchmark that allows investigating the sensitivity of CATE models to the
many difficulties a dataset might hold. Therefore, we consider it necessary to work with simulated
data, i.e. to posit DGP for which difficulties can be properly designed, and the ground truth is
known. Our benchmark includes DGP from the literature which are response-based (i.e. they posit
Y ), having limits that we discussed in section 2.3. We also introduce our own DGP approach which
is causal-structure-based (i.e. we posit the causal populations). The various characteristics of a
dataset we ideally would like to explore experimentally through our benchmark are the following:

• distribution of causal populations,

• the overlap between causal populations,

• intensity of CATE,

• incomplete causal information,
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• number of features,

• presence of non-causal features,

• correlation structure between features,

• the imbalance test/control,

• and the size of the dataset.

5.1.1 General parameters of the DGPs

Here we present the common choices to all the DGPs we implement.

Dataset size. In order to test the impact of data volume on the models’ performance, we focus
on datasets of sizes 5000 and 20000. We would have liked to test bigger sizes, but we cannot afford
the computational time required.

Causal and non-causal features. In order to study how models are impacted by the number
of causal and non-causal features, we implement the following mixes of causal/non-causal features:
(2, 0), (2, 2), (2, 4), (2, 8), (5, 0), (5, 2),(5,5), (5, 20),(8,0), (8, 4),(8,8), (8, 32).

Imbalance test/control. In order to test different propensities, we still resort to constant func-
tions though and we have chosen to test the following values: w(x) = 0.15, w(x) = 0.3 and
w(x) = 0.5. We assume that cases were w(x) > 0.5 are symmetrical and need not be specifically
tested.

Correlation structure between features. As the final step of our DGPs, we create a correlation
structure between the features, following these two steps:

• We perform pairwise nonlinear transformations between causal features. Precisely, we ran-
domly select two causal featuresXi andXj and make the transformation (Xi, Xj)→ (2X

i

, Xi−
2X

j

).

• We linearly transform the features by multiplying them with a randomly generated invertible
matrix.

These transformations blur and dilute the causal signal among all features. It is important to note
that the CATE of an individual is preserved throughout all these transformations since they are
bijective.

5.1.2 Causal-structure-based DGPs

In these DGPs, we construct data by positing the causal structure, i.e. the parameters πk and fk
with k ∈ {R,S,D,A} are explicitly specified.

We decided to pick the following values for the relative abundances of the causal populations
(πR, πS , πD, πA):

• 0.25, 0.25, 0.25, 0.25

• 0.15, 0.35, 0.35, 0.15
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• 0.4, 0.1, 0.4, 0.1

• 0.1, 0.1, 0.7, 0.1

• 0.45, 0.05, 0.05, 0.45

These first choices aim at exploring the consequences of the imbalance of causal populations. The
last example is meant to represent what we expect to be a typical marketing application where
the fraction of responders is low and the vast majority of the dataset is comprised of uninterested
customers (i.e. doomed).

Each causal population is posited as a mixture of Gaussian and uniform distributions. Impor-
tantly, in this DGP, a causal population may be multimodal. The mean, covariance of Gaussians
and the support of uniform distributions are randomly drawn, but in such a way that overlap be-
tween the supports of causal populations is expected to be frequent. By respectively denoting g
and u Gaussian and uniform distributions, we decide to implement the following mixtures for causal
populations R, S, D and A:

• g, g, g, g

• g+g, g, g, g

• g, g, g+g , g

• g+u, g+u, g+u, g+u

• g+u, g, u, g+u

• g+g+u+u, g+g, u, g+g+u+u

5.1.3 DGPs from the literature

We implement several DGPs that are either exactly those used in other articles or generalizations of
them. It is important to note that we have analytically derived the ground truth for each of these
DGPs. The formulas, as well as technical details, are given in the appendix A.

Response-based DGP of type 1. Yi = 1(f(xi) + Tig(xi) + εi > 0) where ε ∼ N (0, σ). We
implemented (either exactly or very closely) the DGPs used in [28] (which is also used in [20]) and
[18].

Response-based DGP of type 2. Yi ∼ B(f(xi, Ti)) [19, 29].

Response-based DGP of type 3. This DGP is inspired from [12]. It is of the form Yi =
1(αi + εi > 0) where αi ∼ U([a(xi, Ti), b(xi, Ti]) and a and b are such that a(x, T ) < b(x, T ) ∀x, T .

These various response-based DGPs require to posit the population distribution as well. Choices
encountered in the literature are uniform and Gaussian distributions. The literature seems to use
only a propensity of 1

2 but we will test other values as stated above.
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5.2 Simulated DGPs vs. the reality

To what extent do these DGPs succeed in reproducing the difficulties that can be encountered with
real data? We cannot know for sure since it is impossible to know the ground truth of the real data.
However, here are our insights:

• In real-life situations, we expect a complex overlap between causal populations. The simulated
causal-structure-based DGPs are certainly the best for generating and monitoring such com-
plexity. Moreover, these DGPs can easily generate multimodal distributions for each causal
population, whereas they would be unimodal in most DGPs of the literature. In other words,
the DGPs in the literature implicitly assume that each of the four causal populations is centered
on a single archetype. We can undoubtedly convince ourselves that there must be real-world
applications where some of these causal populations are in fact composed of several different
archetypes.

• In causal-structure-based DGPs, the distribution of the population p(x) cannot be indepen-
dently controlled; it is rather a consequence of our choice of causal populations distributions.
As we design DGPs based on an increasingly complex causal structure, we may end up with
a marginal distribution of covariates that is already quite strange and unlikely. In responsed-
based DGPs, the population distribution can be independently positted in a more realistic
way.

• It is important to note that none of the existing DGPs yet include discrete covariates. However,
this could easily be implemented.

• We know that outliers are a ubiquitous source of problems in real-world applications. Here,
outliers are obtained only as very rare realizations of the used distributions. In real life, these
outliers can occur more frequently and with a peculiar structure.

Therefore, none of the proposed DGPs seems likely to single-handedly reproduce the properties
of real data. The benchmark we propose is the best we could find to explore the different difficulties
listed in 5.1. We hope that our proposals will trigger a collective effort within the community to think
deeply about this crucial (but overlooked) question and to go further by building in a consensual
way an experimental standard that is as challenging and informative as possible if this one is still
insufficient.

5.3 Models

Since we chose Python as our programming language, we focused on publicly available open-source
models in this language. However, we found almost nothing beyond the T-learner implementations.
Our main hope was the CausalML library [32], a fine effort which implements uplift random forests
and the X-learner. However, when we tested it (i.e., in 2020), it turned out to be too slow to be
used in our benchmark. So we decided to develop our own libraries. So we implemented :

• DUR1 and DUR2, our proposed deep DR-learners.

• SMITE∗ and SMITE [22].

• T-learners with logistic regression, random forests and neural nets.

• URF-V∗, a random forest regressor that targets the V ∗ metric.
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• Random forests from the literature: URF-ED, URF-Chi and URF-KL from [16], URF-CTS
[12] and URF-G2 [33].

We also included the ECM algorithm [24] whose code is freely available.1

[18] and [20] are relevant variations of uplift random forests that go beyond the mere modification
of the split criterion. We have not implemented them because of time constraints, although we
would like to. We also did not implement the X-learner [13] : we estimated that optimizing its
many sub-models and parameters would be too time-consuming or too restricted and thus possibly
inconclusive.

As baseline models, we use three T-learners with, respectively, logistic regressions (model T-RL),
random forests (T-RF) and neural networks (T-NN). The T-NN model uses binary cross-entropy as
a loss. T-NN is intended to be compared with DUR1 and DUR2 in order to assess how much of the
performance comes from the simple use of neural networks and how much can be awarded to the
efficiency of the loss function.

Due to long computation times, we had to remove some models from our benchmark and restrict
the number of hyperparameters. Based on our sandbox experiments, we finally made the following
choices:

• DUR1 and DUR2 seemed to have fairly similar performances, so we decided to test DUR2 only
and removed DUR1 from the benchmark

• Since neural nets models are the most time-consuming, we wanted to reasonably limit the
number of hyperparameters to explore. We eventually chose to use the same architecture for
all our neural nets: two hidden layers of size 60 and 40, a batch size of 128, with ADAM
optimizer. The free hyperparameters that we will optimize through cross-validation in a data-
specific manner are the learning rate and the regularization coefficient λ.

The final list of 12 models of our benchmark and hyperparameters to be learned are:

• DUR1: learning rate and regularization coefficient.

• T-NN: learning rate.

• SMITE∗ and SMITE: learning rate and regularization coefficient

• ECM: no hyperparameter.

• URF-ED, URF-Chi, URF-KL, URF-CTS, URF-V∗, T-RF: number of trees, maximum depth
of a tree, minimum number of samples per leaf.

• T-RL: no hyperparameter.

By keeping only one or two hyperparameters to be learned for neural nets, it is clear that we
will not fully exploit their potential. For instance, we work with a fixed architecture of 100 neurons
distributed within two layers for all our neural nets models. In contrast, in the original paper of
SMITE, the authors use an architecture of 860 neurons distributed within 6 layers. Optimizing the
architecture for each DGP of the benchmark would certainly lead to better results than the ones we
report in section 6.

1We thank Christophe Renaudin from the Criteo R&D team for spectacularly speeding up the original implemen-
tation of this code.
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5.4 Experimental comparison of metrics

Although we presented several possible metrics in section 3, the focus of our work will be to compare
the practical value of the AUUC vs. L̂∗. We devised the following experimental criterion: since the
ultimate goal of a metric is to select the best model among those trained by the user, the best metric
is the one that most often leads to the selection of the same model as would a ground-truth based
reference metric. Below we present the four reference metrics we have chosen to use in this work.

5.4.1 Reference ground-truth-based metrics

RMSE We obviously include the true RMSE L, which L̂∗ is meant to approximate.

True expected margin We also introduce the “true expected margin” Gs defined as:

Gs(τ̂) =
∑

i|τ̂(xi)>s

τ(xi). (36)

It represents the marginal gain when following the recommendations of a model, i.e. what the
user will truly gain by treating individuals whose predicted uplift is above a certain threshold s.
Gs allows to measure the relevance of predictions in the high-uplift part (i.e. the one of interest in
practice) while L̂∗ and the AUUC assess it on the whole dataset. Comparing the performance of
a model according to the RMSE and Gs allows to see whether it actually specializes on a specific
segment of population, which might be desirable or not depending on the segment. Gs is a valid
metric for the problem only when s = 0. Indeed, for any prediction τ̂ , we have:

G0(τ̂) =
∑

i|τ̂(xi)>0

τ(xi) ≤
∑

i|τ̂(xi)>0,τ(xi)>0

τ(xi) ≤
∑

i|τ(xi)>0

τ(xi) = G0(τ). (37)

Despite the fact that the true model achieves the absolute best performance according to G0, it is
far from being the only one: any model that correctly predicts the sign of the CATE achieves the
same level of performance. This metric is therefore much less demanding than the RMSE. However
it captures directly the pragmatic expectation of a user when using a CATE model. Although the
value of Gs for different thresholds is certainly of interest to the end user, in the context of this article
we will only focus on s = 0. Moreover, since G0 is unbounded and that we will want to compare

results over a large diversity of DGPs, we will rather work with G′0(τ̂) = 1− G0(τ̂)
G0(τ) , which belongs to

[0,1] and which we want to minimize.

Rank metrics Out of curiosity, we will also compute true rank metrics, namely Spearman’s and
Kendall’s rank correlation coefficients ρspearman and τkendall. Although achieving a good ranking is,
in our opinion, a lesser goal, those metrics will allow assessing whether the AUUC is indeed doing a
good job in this regard.

5.4.2 Principle of the comparison

We perform the experimental comparison between L̂∗ and the AUUC as follows: for every model
trained in our benchmark, we compute the AUUC, L̂∗ and the four reference metrics (L, G′0,
ρspearman and τkendall) on its predictions on the train set. Among all hyperparameters tested for

this model, we pick the best choice according to the AUUC and the best choice according to L̂∗ and
look at which of the two is actually the best with respect to each reference metric. Then, we count
how many times a metric led to a better choice than its competitor throughout our benchmark.
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5.4.3 Remarks and improvements for future works

Unlike the AUUC, L̂∗ is DGP-specific and is not uniquely defined: it depends on a quantity that
must be estimated from the data in a preliminary step, which can be done in an infinite number
of ways. This is ground to argue that our experimental comparison cannot be definitely conclusive:
for instance a bad performance of L̂∗ could still be blamed on an inappropriate learning of a∗ and
not on the principle of the metric itself. We consider that our practical choices are reasonable and
that our readers will agree that the observations we report are indeed relevant indicators of what
can be expected in practice. However, a better answer and an improvement of our work would
be to also test L∗ (that is the idealized version of L̂∗ that makes use of the true value of a∗) in
order to get a reliable upper practical bound of the merits of L̂∗. In a future work that extends
our experimental comparison of metrics to the R-metric, this question would be raised even more
acutely since the R-metric also depends on the estimation of yet another unobservable quantity
E[Y |X]. Some “gentlemen’s agreement” should be found to ensure fair comparison, for instance the
use of models of similar complexity to respectively learn a∗ and E[Y |X]. Comparing the idealized
versions of those metrics would be also very informative.

5.5 Computing L̂∗

It is important to note that the efficiency of L̂∗ relies on the quality of the preliminary estimation
of a∗ from the data. This is per se a learning task that should be performed as thoroughly as
possible. However, due to our limited computing resources, we decided to use a unique model
type in the benchmark. We pre-benchmarked several model types using two possible approaches
to estimate a∗: the two-classifier approach associated with 29 and the regression on the observable
Ai = w(xi)(1− w(xi))YiT

∗2
i .

We implemented a KNN, a random forest and a neural net regressor NNR for the first approach
and T-NN (two neural net classifiers with binary cross-entropy as a loss) for the second. We then
tested these models on 200 DGPs randomly selected in our base. For each DGP, we proceeded
to standard model training (train/test split, selection on the best hyperparameters through cross-
validation on the train set). The metric used to decide the winner is the approximated RMSE

̂RMSE(â) =
√∑

(âi −Ai)2. In table 1, we report the average value on this benchmark of ̂RMSE(â)

and RMSE(â) =
√∑

(âi − a∗i)2.

model < ̂RMSE(â) > < RMSE(â) >
KNN 0.789 0.183
RF 0.779 0.134

NNR 0.777 0.130
T-NN 0.773 0.106

Table 1: Average performances of each model in estimating a∗ on 200 randomly selected DGPs

Although NNR was meant to specifically optimize ̂RMSE(â), the best overall results were ac-
tually achieved by the T-strategy, which we therefore used throughout our benchmark of CATE
models as our unique strategy to estimate V̂ ∗. It means that we have not taken advantage of the
potential benefits of our novel expression of V ∗ (29) but rather worked with its known AIPW form
(11). On these 200 tests, there were 18 where NNR would have been a better choice than T-NN
though. Again, resorting uniquely to T-NN is only a pragmatic decision we had to make to deal
with our constraints and we would have systematically tested all models and specifically selected
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the best for every DGP if possible.

5.6 Training models

Train, validation and test sets. To train a model and assess its performance, we first randomly
separate the initial dataset into a train set (80%) and a test set (20%). For every set of hyperparam-
eters considered, we train the model on the train set using a 5-fold cross validation. For each metric
considered, we compute its performance as the average of its 5 performances generated by the 5-fold
cross validation. For L̂∗ and the AUUC, we select the best model, re-train it on the whole training
set and measure its performances according to L̂∗, the AUUC and our 4 ground-truth-based metrics
(see 5.4) on the test set.

Extended stratification. Whenever we split the data, we use an extended stratification scheme:
we ensure that the quantities E[Y |T = 1] and E[Y |T = 0] are conserved among each split.

Hyperparamaters search. We generate the values of hyperparameters to be tested as follows:
for every hyperparameter, we pre-determine a certain window of size L and draw four values equally
spaced from it. We test all combinations of hyperparamater values (for instance, if we have 2
hyperparameters, we test 42 combinations). We then repeat the process once after redefining a
window of size L/4 centered on the best hyperparameter values found at this point.

Training T-learners We add another constraint to limit the training time of T-learners: the same
hyperparameters are used for both sub-models of the T-learner. Ideally, specific hyperparameters
should be searched for each sub-model and all the combinations of sub-models generated during this
training should be considered to find the best combined T-model.

6 Results

In the end, we managed to optimize 12 model types on 4021 DGPs : 3900 are causal-structure-based
and 121 are response-based. It should be highlighted that:

• We developed all codes used. Our results depend on our code’s correctness and our monitoring
of such a demanding benchmark. We hope that our code will be thoroughly checked and our
experiments reproduced.

• We have strongly restricted the hyperparameters considered for neural models to reduce train-
ing time. Those models may achieve better performance than the one reported here by tuning
all available hyperparameters.

The goal of this section is to establish the best metric and model and to obtain as many insights
as possible on the CATE problem.

6.1 V ∗

First we want to give a global picture of V̂ ∗ and V ∗ in this benchmark. How good an estimator are
they in general? We will answer this question by measuring their global variance Var(V ) = 1

N

∑
(Vi−

τ(xi))
2 for all the considered DGPs. The maximum value of

√
Var(V ∗|x) in our benchmark is 1.4
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Figure 1: Distribution of
√

Var(V ∗) and

√
Var(V̂ ∗) in the 4021 DGPs of our benchmark. Bins of

0.1 have been used.

(reached for the minimum value of w(x) we have used, that is 0.15, and when µ0(x) = µ1(x) = 1
2 ).

In figure 1 we plot the histograms of
√

Var(V ∗) and

√
Var(V̂ ∗).

If we subjectively consider that a standard deviation of less than 0.2 is a reasonable criterion for
considering that the CATE problem has been transformed into a standard regression problem, we
can see that this is not the case for most DGPs in our benchmark. There are only 254 DGPs such

that
√

Var(V ∗) < 0.2 and 185 such that

√
Var(V̂ ∗) < 0.2. We can also observe that the median

values for
√

Var(V ∗) and

√
Var(V̂ ∗) are respectively 0.622 and 0.644.

There are a few DGPs where
√

Var(V ∗) is close to its worst theoretical value. After a thorough
examination, we noticed a pattern; these are causal-structure based DGPs where “opposing” causal
populations (i.e. responders/anti-responders or survivors/doomed) are present in similar proportions
and massively overlap. In general, in these DGPs, there are only 2 causal variables and opposing
causal populations are normally distributed with means very close to each other.

In figure 2, we display the distribution of the RMSE of V̂ ∗ (i.e.
√

1
N

∑
(V̂ ∗i − V ∗i )2) throughout

the benchmark.
We have used a unique approach to estimate V̂ ∗ (a deep T-learner relying on binary cross

entropy). We can see that for most of our DGPs, this results in an RMSE of less than 0.2 (median:
0.173), which can be considered acceptable. Also, we can observe that there are 443 DGPs with
RMSE higher than 0.4, which indicates a poor estimation in our opinion. We have no a priori idea
whether these are DGPs for which the chosen strategy was inappropriate or whether these DGPs are
fundamentally intricate. For this, we computed the correlation between

√
VarV ∗ (interpreted here

as an index of the inherent intricacy of the DGP) and the RMSE of V̂ ∗. We found a low correlation
of 0.197, suggesting that the quality of the estimation of V̂ ∗ is not strongly related to the intricacy
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Figure 2: Distribution of the RMSE of V̂ ∗ in the 4021 DGPs of our benchmark.

of the DPG.
The quality of V̂ ∗ as an estimator of the CATE thus changes a lot within the benchmark, and

it is certainly interesting to try to understand how this impacts the performance of the models that
rely on it.

6.2 L̂∗ vs. the AUUC

For each of our 4021 DGPs and for each of the 11 model types (ECM is excluded), we have trained
several models with different hyperparameters among which we want to select the best. In the end,
we had 43830 competitions to compare which of L̂∗ or the AUUC (henceforth refered to as A) allows
to make the better choice with respect to a ground-truth-based reference metric. Throughout all
these competitions and for each reference metric, we count the number of times

• L̂∗ selects a better model than A,

• A selects a better model than L̂∗,

• L̂∗ and A selects models with an equal performance (which almost always means that they
selected the same model).

We can see in Table 2 that L̂∗ has an overwhelming superiority over A in terms of RMSE. How-
ever, this does not translate into a superiority in terms of ρspearman and τkendall. Our explanation

is that the extent of the improvement of the individual prediction obtained through the use of L̂∗
is actually not big enough to lead to a significantly different ranking of samples as measured by
ρspearman or τkendall. This actual extent can be seen in the next subsection that reports the models’
performance.

As for G′0, we recall that this pragmatic metric, which is eventually the one of the most interest
to the end user, measures only the ability of a model to predict correctly the sign of the uplift,
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reference metric ex aequo L̂∗ wins A wins
RMSE 10671 28391 4768

ρspearman 10671 16722 16437
τkendall 10671 16225 16934
G′0 10845 17141 15844

Table 2: Comparison of L̂∗ and the AUUC with respect to reference metrics

as explained earlier. Improving the accuracy of individual prediction is certainly an advantage in
that respect. However, the overall gain will be mainly due to samples with CATE around 0, which
therefore contribute the least to the metric. Thus, selecting models according to L̂∗ leads only to a
modest improvement over A in terms of G′0.

We also computed how many times each metric overstepped its boundaries, i.e. how many times
the selected model had a better performance than the true model on the test set. We found that,
out of the 43830 generated models in this benchmark, we got:

• A(τ̂) > A(τ) : 5715 times.

• L̂∗(τ̂) < L̂∗(τ) : 840 times.

• A(τ̂) > 1.01A(τ) : 3119 times.

• L̂∗(τ̂) < 0.99L̂∗(τ) : 115 times.

From this point of view, L̂∗ seems also more reliable than the AUUC.
We conclude that the AUUC is slightly inferior to L̂∗ as a metric for the CATE task. However,

we recall that, in our benchmark, we assume that w is known, which is ideal for L̂∗ since it removes
a source of noise and guarantees the AIPW pseudo-outcome to be consistent, whereas the AUUC
needs not this extra information. Moreover, as practitioners, we are especially interested in G′0 and
although L̂∗ has a small relative advantage in that respect, next section will show that very little
is lost in terms of absolute value. Therefore, in the general case, we expect the AUUC to remain a
safe choice whose practical advantages outweigh possible small losses of performance.

6.3 Models

In this section, we present the experimental results of all models. We decompose these results
according to the many parameters of the DGPs in order to characterize their strengths and flaws.
We also introduce some analysis of the local behaviour of each model. Since there are so many
parameters, it is certainly possible to expand on these results beyond what we propose below.

Throughout this section, we highlight some observations that we found enlightening. We hope
to stimulate a global scientific conversation about how these results should be further analysed. If
it happens, we will include new elements in the next versions of this article.

6.3.1 General results

For every model type, we have selected two models: the best according to L̂∗ and the best according
to A. The average and the standard deviation of their scores on the whole benchmark with respect
to our 4 ground-truth-based metrics are provided in table 3. We make the following observations:
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model RMSE ρspearman τkendall G′0
T-NN + L̂∗ 17.1 (8.2) 84.3 (12.9) 71.1 (14.2) 5.5 (7.7)
T-NN + A 17.2 (8.2) 84.3 (12.9) 71.0 (14.2) 5.5 (7.6)

SMITE* + L̂∗ 16.5 (7.3) 84.2 (12.7) 70.7 (13.8) 5.6 (7.7)

DUR2 + L̂∗ 16.1 (7.7) 83.1 (13.3) 69.3 (14.3) 5.7 (8.1)
DUR2 + A 17.3 (7.5) 83.8 (13.2) 70.1 (14.3) 5.7 (8.1)

SMITE* + A 16.8 (7.3) 84.0 (12.8) 70.5 (13.9) 5.8 (8.1)

SMITE + L̂∗ 17.2 (7.5) 83.7 (13.0) 70.2 (14.1) 5.9 (8.1)
SMITE + A 17.9 (7.5) 83.3 (13.4) 69.8 (14.3) 6.2 (8.7)
URF-V* + A 23.0 (8.6) 83.9 (11.1) 69.1 (11.6) 6.6 (6.8)

URF-V* + L̂∗ 23.0 (8.6) 83.9 (11.1) 69.1 (11.5) 6.6 (6.8)
URF-KL + A 24.0 (8.7) 83.2 (11.6) 68.4 (12.0) 6.7 (7.0)

URF-KL + L̂∗ 24.0 (8.7) 83.2 (11.6) 68.4 (12.1) 6.7 (6.9)
URF-ED + A 23.2 (8.5) 83.4 (11.5) 68.5 (11.9) 6.8 (7.1)

URF-ED + L̂∗ 23.2 (8.5) 83.4 (11.5) 68.5 (11.9) 6.8 (7.0)
URF-Chi + A 26.5 (9.1) 82.2 (11.8) 67.2 (12.1) 7.1 (7.0)

URF-Chi + L̂∗ 26.5 (9.1) 82.1 (11.9) 67.1 (12.2) 7.1 (7.0)

URF-CTS + L̂∗ 25.5 (8.8) 82.8 (11.8) 67.8 (12.1) 7.4 (7.5)
URF-CTS + A 25.5 (8.7) 82.8 (11.9) 67.8 (12.2) 7.4 (7.4)

T-RF + A 25.7 (9.3) 79.4 (14.4) 64.1 (14.1) 9.2 (9.4)

T-RF + L̂∗ 25.7 (9.3) 79.4 (14.5) 64.1 (14.2) 9.2 (9.4)

T-RL + L̂∗ 30.3 (12.1) 70.0 (21.7) 55.0 (20.0) 16.2 (18.6)
T-RL + A 30.3 (12.1) 70.0 (21.7) 55.0 (20.0) 16.2 (18.6)
ECM + A 24.3 (15.0) 76.1 (21.0) 63.5 (22.1) 16.3 (19.9)

ECM + L̂∗ 24.1 (14.8) 75.7 (21.5) 63.2 (22.4) 16.5 (20.3)

Table 3: The average and the standard deviation of their scores on the whole benchmark with respect
to our 4 ground-truth-based metrics. Models are sorted according to G′0.
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• In terms of RMSE, neural nets clearly outperform the other models. For every model type,
selecting the best model with L̂∗ leads to a better RMSE than selecting with the AUUC.

• All metrics are topped in average by neural nets models selected with L̂∗. However, for metrics
other than the RMSE, there is no clear difference between the performance of neural nets and
random forests.

• For some models like DUR2, selecting with the AUUC leads to better performance with respect
to true rank metrics.

• As for random forests, the same hierarchy can be seen on every metric: URF-V∗ > URF-ED
> URF-KL > URF-CTS > URF-Chi

• Perhaps disappointingly, the baseline neural net T-NN is a top contender. Even if it is beaten
by DUR2 and SMITE∗ on the RMSE as we hoped (since these latter models are trained to
minimize L̂∗, an approximation of the MSE), but it still prevails on rank metrics and overall
on G′0. The “naive” T-learner strategy is still strong.

Besides these average performances, we have also looked at how those models globally rank in
the benchmark, i.e. how many times each model is first, second, etc. For each metric, we have
a 24 × 24 table that we do not display here for space constraints. Considering the ranks do not
alter the general impressions listed above but reveals an additional striking observation. We found,
indeed, that the results of ECM are all-or-nothing; it actually comes first in 550 scenarios (with
very few second places) and lies at the bottom most of the time. ECM is a parametric model and
we have checked that it does indeed outperform the other models when it is correctly specified, i.e.
when the causal populations have a Gaussian distribution. In addition, ECM is very sensitive: if
we take a DGP which it comfortably tops and apply a few nonlinear bijective transformations of
the covariates, its performance collapses and reaches the bottom. Therefore, as such, the ECM is
unlikely to be reliable in a real word application, but this nevertheless suggests that it might be
worthwhile to improve it by making it capable of handling other types of distributions. The authors
have chosen to focus only on Gaussian distributions in the current implementation, but the principle
of this algorithm could be adapted to many others.

6.3.2 DGP breakdown

Since there are 3900 DGPs relying on the causal structure and 121 on the response function, the
results provided in table 3 are mostly characteristic of the causal-structure-based DGPs. In table 4
we highlight the performance on those response-function-based DGPs inspired from the literature.

We can see that the picture is different: in terms of RMSE, the absolute level of performance of
neural nets is higher than on causal-structure-based DGPs and the two-classifier neural net prevails.
Moreover, the two-classifier logistic regression also performs considerably better and is even the best
performer with respect to ρspearman and τkendall. These facts suggest that those DGPs are indeed
easier on average, with a structure most often appropriate to linear separation as performed by
logistic regressions. As for ECM in the previous subsection, a closer examination shows that T-RL
actually clearly dominates on scenarios from Tian (2012) [28] and Lo (2002) [29], while it performs
poorly on the others. However, there are puzzling facts: the performance of random forests collapses
in all respects and all models perform worse in terms of G′0.

It is then clear then that DGPs matter: differences in causal structures impact differently the
models considered in this study and deeper analysis are required to understand the relationship
between the characteristic of a DGP and the success or failure of a model.
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model RMSE ρspearman τkendall G′0
T-NN + L̂∗ 10.4 (6.4) 84.9 (14.3) 72.4 (16.5) 7.4 (10.8)
T-NN + A 10.7 (6.6) 84.5 (13.8) 71.9 (16.3) 7.4 (9.6)

DUR2 + L̂∗ 11.6 (6.6) 81.8 (16.1) 67.8 (17.6) 8.5 (12.3)

SMITE* + L̂∗ 11.8 (6.1) 83.7 (14.8) 70.6 (16.7) 7.5 (11.1)
SMITE* + A 12.7 (6.4) 82.3 (16.0) 69.2 (17.6) 8.8 (13.5)

SMITE + L̂∗ 13.6 (7.0) 81.1 (15.2) 67.7 (17.5) 9.6 (12.4)
DUR2 + A 13.7 (6.5) 81.5 (16.7) 67.7 (18.3) 8.7 (11.7)
SMITE + A 14.4 (7.3) 80.9 (15.8) 67.3 (17.8) 9.7 (12.6)

T-RL + L̂∗ 17.7 (16.5) 86.1 (13.6) 73.2 (14.7) 8.3 (10.2)
T-RL + A 17.7 (16.5) 86.1 (13.6) 73.2 (14.7) 8.3 (10.1)

URF-V* + A 22.1 (13.2) 72.0 (19.6) 56.7 (17.9) 15.0 (15.9)

URF-V* + L̂∗ 22.3 (13.1) 72.0 (19.4) 56.5 (17.7) 14.9 (15.4)

URF-ED + L̂∗ 22.3 (13.1) 71.2 (20.1) 55.8 (18.2) 15.5 (15.9)
URF-ED + A 22.4 (13.1) 71.2 (20.1) 55.9 (18.3) 15.6 (15.9)

URF-KL + L̂∗ 22.7 (13.1) 71.5 (20.6) 56.5 (19.2) 15.4 (15.7)
URF-KL + A 22.8 (13.2) 71.4 (20.5) 56.4 (19.1) 15.5 (16.0)

T-RF + A 23.8 (13.5) 65.8 (19.9) 50.7 (17.9) 20.5 (17.8)

T-RF + L̂∗ 23.8 (13.5) 65.8 (20.0) 50.7 (17.8) 20.7 (18.0)
URF-Chi + A 23.8 (13.0) 71.3 (20.5) 56.4 (19.2) 15.5 (15.3)
URF-CTS + A 23.9 (13.4) 71.1 (20.1) 55.8 (18.3) 15.8 (16.2)

URF-Chi + L̂∗ 23.9 (13.1) 71.2 (20.8) 56.3 (19.4) 15.5 (15.7)

URF-CTS + L̂∗ 23.9 (13.4) 71.1 (20.2) 55.7 (18.2) 16.0 (16.5)

ECM + L̂∗ 24.0 (11.0) 72.1 (18.8) 57.5 (18.2) 19.8 (16.3)
ECM + A 24.1 (11.1) 72.2 (18.6) 57.6 (18.1) 19.7 (15.9)

Table 4: Average performances and standard deviations on 121 response-based DGPs inspired from
the literature.
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Impact of DGP parameters on model’s performance Here we investigate the extent to which
one-to-one modifications of the quantitative characteristics of the DGPs impact the performance of
each model. These characteristics and their possible values in our benchmark are:

• the number of samples N : 5000 or 20000;

• the propensity w: 0.15, 0.3 or 0.5;

• the number of nonlinear transformations of the data nl: from 0 to 15;

• the number of causal features c : 2, 5, 8;

• the number of noncausal features nc : 0, 2, 4, 8, 20, 32;

• the variance of Gaussian distributions σ: 0.3, 1;

• whether a linear transformation of the features has been applied at the end of response-based
DGPs from the literature l.

Some parameters are not single quantitative indices: the quadruplet of causal population abun-
dance (πR, πS , πD, πA) and the mixture of distributions used to generate causal populations, which
encompasses the nature of canonical distributions used (Gaussian or uniform) and the complexity of
the mixture (up to 4 canonical distributions may have been used to generate a causal population).
We chose to reduce these parameters to single indices (which obviously implies a loss information)
in order to perform the same impact analysis as for the other parameters. Therefore, we chose to
introduce the following new indices:

• πR + πA, meant to somewhat capture the global strength of the CATE signal in a DGP (since
the responders and anti-responders are the causal populations that drive its value away from
0). πR + πA ranges from 0.2 to 0.9 in our benchmark.

• The overall number of canonical distributions used in a DGP ndist. It ranges from 4 to 11 in
our benchmark.

We paired all DGPs that differ in only one of these characteristics and computed for each model
type the variation in performance between all paired DGPs. The reference DGP is chosen as the
one with the lowest value of the considered characteristic. There are 14854 of these unique pairs of
DGPs. We focus on the RMSE as the reference metric of model performance. The average results
are displayed in table 5.

We do not comment on the performance of ECM, T-RF or T-RL. Indeed, since their baseline
performance is poor, we are not interested in their variations. We still report them for the sake of
completeness.

We can see a number of expected trends and their actual extent:

• All models benefit from larger data sets. For all models, increasing the size of the dataset from
5000 to 20000 samples leads to around 6% of improvement of the RMSE in average.

• Increasing the number of variables in the problem decreases the performance of all models.
In particular, increasing the number of causal variables has a more severe impact on random
forests than on neural networks.

• Increasing the propensity (which in our case means improving the test/control balance since
we tested the values 0.15, 0.35 and 0.5) improves the performance of all models.
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N nc c w σ nl l πR + πA ndist
model (1446) (2145) (920) (2575) (1972) (1566) (30) (1379) (3167)
DUR2 5.7 -2.7 -1.9 1.2 -2.6 -1.8 -1.8 -3.7 -1.1
T-NN 6.7 -3.0 -1.9 1.1 -3.1 -1.7 -3.2 -4.1 -0.8

SMITE* 5.6 -2.8 -2.5 1.1 -3.5 -1.5 -2.4 -3.5 -0.6
SMITE 5.9 -3.1 -2.9 1.2 -2.8 -1.4 -0.5 -3.6 -0.5
URF-V* 7.2 -1.8 -8.8 0.9 1.6 -2.1 -6.9 -2.5 -2.8

URF-CTS 6.4 -2.0 -8.7 0.7 2.1 -2.0 -6.3 -3.0 -2.9
URF-Chi 5.3 -2.1 -10.0 0.5 4.0 -1.5 -5.0 -2.4 -3.4
URF-ED 7.1 -1.8 -8.7 1.0 1.7 -2.1 -6.9 -2.5 -2.7
URF-KL 6.9 -2.0 -9.1 0.9 2.3 -1.9 -5.9 -2.4 -2.8

T-RF 8.2 -1.7 -10.1 1.7 2.3 -1.8 -6.5 -2.7 -2.5
T-RL 0.1 0.2 -6.4 0.2 2.6 -0.9 -0.1 -6.4 -3.5
ECM 1.2 -0.9 -1.9 2.0 -5.4 -7.1 -0.3 -9.7 -3.5

Table 5: Average variation of the RMSE of each model in % when increasing the parameters of
the DGPs. For each parameter, the number of paired DGPs on which the average was computed is
given in parentheses

• Performing non-linear transformations of the data impacts negatively the performance of all
models.

• Performing linear transformations of the data impacts negatively the performance of all models,
with random forests being the most affected. Our interpretation is that before this transfor-
mation, there is a clear cut between causal and non-causal variables, which is naturally suited
to a random forest’s iterative single-variable split strategy. However, after the linear variable
change, the causal signal spreads across all variables and becomes harder to map for a random
forest.

• Increasing πR+πA has a negative impact on the performance of all models. Our interpretation
is that a higher πR + πA mostly leads to DGPs with a wider CATE range, which is likely to
increase the estimation’s errors of the model.

• Neural models are more robust with respect to the inherent complexity of the distributions of
causal populations as measured by ndist.

Very interestingly, we also notice an unexpected behaviour: by increasing the variance of the
Gaussian distributions used in our DGPs (which generates, on average, more overlapping of causal
populations and increases the levels of VarV ∗|x), the performance of neural nets decreases while
that of random forests improves (even URF-V∗ which is based on V̂ ∗).

6.3.3 Model performance as a function of the overlapping of causal populations

To better understand the latter observation, we plot the RMSE score made by each model on all the
test sets of the benchmark in function of the local overlapping of causal populations as measured by
η (introduced in eq. (33)). In other words, for each model we aggregate the 11542536 predictions it
made across all test sets of the benchmark and compute

error(η) =
√

E[(τ̂ − τ)2|η]. (38)
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Figure 3: RMSE of models in function of η. Bins of 0.01 have been used.

Results are displayed in fig. 3.
This plot reveals peculiar local behaviours of models: random forests actually perform terribly

in what are supposed to be “easy” regions, i.e. regions with low η, which mainly consist of one type
of causal populations. This allows to make sense of the fact that increasing σ in our benchmark led
to better performances for random forests.

Within the neural networks category, SMITE∗ prevails when η < 0.53 while DUR2 prevails
otherwise. Moreover, DUR2 seems to improve as η increases (i.e. the curve has a negative slope).

Obviously, describing the local behaviours of models according to a single index cannot capture
the whole complexity of the situation. For instance, survivor-only regions and anti-responders-only
regions both have η = 0 and thus predictions on these regions have been merged and contribute
to the same point of fig 3. However, the behaviour of some models in regions where Yi(1) = Yi(0)
might actually differ from regions where Yi(1) 6= Yi(0).

When facing these curves, we obviously want to go further and try to investigate whether (and
how) they are fundamentally related to the principle of each model or whether they are only induced
by the peculiarities of our benchmark. We have indeed noticed a recent work [34] that addresses this
issue in general and provides empirical evidence that a seemingly well-established models’ hierarchy
can be reversed by a few adjustments on the DGPs. If this is true and consistent, we hope at least
that our introduction of η will be helpful in exploring and understanding this dependency.

7 What is the best model?

As shown previously, T-NN, DUR1 and SMITE∗ selected with L̂∗ already emerge as the best models
in our benchmark although we certainly did not tap their full potential (we used the same architecture
for all DGPs and optimized at most two hyperparameters). DUR1 and SMITE∗ also depend more
intimately on a quality estimation of V̂ ∗, which could also be improved. If we had to pick only one
model, it would be SMITE∗ since by combining L̂∗ and the binary cross entropy loss functions, it
achieves a very close performance to the best for each reference metric while having a lower variance
than other models, suggesting greater reliability.
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However, we will try to go further by assuming that the local behaviours depicted in fig. 3
are indeed inherent to each model. If true, the best model would be actually a meta-model that
picks the prediction of the most appropriate model depending on the local value of η. Since η is
not observable, it implies yet another preliminary training of an estimator η̂, as for V ∗. Since we
can express both V ∗ and η (and the CATE...) in terms of µ1 and µ0 and since we have seen that
T-learner strategy are very competitive, our practical recommendation would be then to estimate
all of them at once by relying on the outputs µ̂1 and µ̂0 of a T-learner that ought to be trained as
thoroughly as possible. Then V̂ ∗ and η̂ could be derived to train the other models and eventually
build to the meta-model.

Our experimental results thus unexpectedly gives importance to the baseline T-learner strategy
(which furthermore has the practical advantage not to rely on an estimation of w). This puts forth a
question that has not been raised in our work: what is the best objective function to perform these
two classifications? In this work we just used a standard binary crossentropy for each submodel of
T-NN. Was there a better choice given the later use of µ̂1 and µ̂0 in L̂∗? We notice that if we rely
on the same estimates of µ̂1 and µ̂0 to compute τ̂ and V̂ ∗, we simply have

τ̂(Xi)− V̂i = Ti
µ̂1(Xi)− Yi

w(x)
− (1− Ti)

µ̂0(Xi)− Yi
1− w(x)

=

{
µ̂1(Xi)−Yi

w(x) if Ti = 1

− µ̂0(Xi)−Yi

1−w(x) if Ti = 0

and so L̂∗ simplifies to:

L̂∗ =
∑
Ti=1

1

w2(xi)
(µ̂1(Xi)− Yi)2 +

∑
Ti=0

1

(1− w(xi))2
(µ̂0(Xi)− Yi)2 (39)

It suggests that T-learners should just be trained by minimizing separately the MSE of Y on the
test and control populations with inverse propensity weighting. This idea remains to be tested.

More tests are also required to substantiate the assumption of the meta-model, i.e that some
models are fundamentally more appropriate on certain ranges of η and that we can have an a priori
idea of the boundaries of these ranges or dynamically find them.

8 Conclusion

In this article, we have proposed a new experimental set-up, performed experimental comparison
of metrics, tested many diverse models and delved into their behaviour beyond mere global per-
formance. We also proposed an alternative formulation of the AIPW pseudo-outcome and our new
models. In conclusion, we share our humble opinion about what should be standardized, what should
be deepened, and what remains to be done to further improve state of the art.

8.1 Take away

We believe that some of our approaches and results are worth standardizing in the future experi-
mental developments of the topic:

• In the case of binary treatment and outcome, benchmarks and axis of analysis of model pre-
dictions need to be standardised. Our contributions (causal-structure-based DGPs, analysis
with DGP breakdown and with η) may constitute worthy elements for the subject’s future.
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• At least when the propensity is known, L̂∗ is preferable to the AUUC to select models.

• When synthetic data is used, it is interesting to assess model predictions with the ground truth
(and do not only rely on the AUUC). The pragmatic G′0 metric is certainly a worthy index to
look at in that respect.

• The causal structure of the DGP is an interesting perspective to interpret results.

• The T-learner is still a serious contender with appropriate means and should not be neglected.

8.2 Future works and open questions

In order to perfectly fulfill the original ambition of our work, several tasks and questions needs to
be tackled:

• Enriching the benchmark by expanding DGPs from the literature in the spirit of what we
did (which was itself following the steps of [30]). Other real-world features could be added
globally (i.e., categorical covariates, outliers, additional noise to simulate errors in covariate
measurements...).

• Expanding our comparison of metrics with new ones (see section 2.1).

• Testing the objective function 39 for the T-learner.

We hope that this article will serve as a platform for a fruitful discussion that will result not only
in the improvement of its content but also in the development of a shared vision of a CATE across
all areas.
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A Ground truth of the DGPs of the literature

Here we present formulas for τ(x), P (R|x) and P (S|x) for different DGPs of the literature, with
sketches of proof. P (A|x) can be then calculated with P (A|x) = P (R|x) − τ(x) and P (D|x) with
P (D|x) = 1− P (R|x)− P (S|x)− P (A|x).

36



Notations

φσ(x) = (
√

2πσ)−1 exp(
−x2

σ
)

Φσ(x) =

∫ x

−∞
φσ(y)dy

η(x) =

∫ x

−∞
Φσ(y)dy = xΦσ(x) + σ2φσ(x) (Proof: integration by parts)

A.1 Response-based DG1 of type 1.

Yi = 1(f(xi) + Tig(xi) + εi > 0) with εi ∼ N (0, σ)

τ(x) = Φσ(f(x) + g(x))− Φσ(f(x))

p(R|x) =

{
τ(x) if g(x) > 0
0 otherwise

p(S|x) =

{
Φσ(f(x)) if g(x) > 0
Φσ(f(x) + g(x)) otherwise

A.2 Response-based DGP of type 2.

Yi = 1(αi+εi > 0) where αi ∼ U([a(xi, T ), b(xi, T ]) and a and b are such that a(x, T ) < b(x, T )∀x, T .
Notations : a(x, 0) = a0, a(x, 1) = a1, b(x, 0) = b0, b(x, 1) = b1, I = (b1 − a1)(b0 − a0). We have
b1 > a1 and b0 > a0.

τ(x) =
η(b1)− η(a1)

b1 − a1
− η(b0)− η(a0)

b0 − a0
(40)

if b0 < a1:

p(R|x) = τ(x)

p(S|x) =
η(b1)− η(a1)

b1 − a1

if b1 < a0:

p(R|x) = 0

p(S|x) =
η(b0)− η(a0)

b0 − a0

if b1 > b0 and a1 > a0:

I.p(R|x) = a0(η(a1)− η(b1)) + b1(η(a0)− η(b0)) + b0η(b1)− a1η(a0)

−σ2(Φ(b0)− Φ(a1))

I.p(S|x) = b1(η(b0)− η(a0)) + a1η(a0)− b0η(a1) + σ2(Φ(b0)− Φ(a1))

if b0 > b1 and a0 > a1:

I.p(R|x) = b1η(a0)− a0η(b1)− σ2(Φ(b1)− Φ(a0))

I.p(S|x) = b0(η(b1)− η(a1)) + a0η(a1)− b1η(a0) + σ2(Φ(b1)− Φ(a0))
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if a1 < a0 and b1 > b0:

I.p(R|x) = (b0 − a0)(η(b1)− η(a1))− b1(η(b0)− η(a0))− σ2(Φ(b0)− Φ(a0))

I.p(S|x) = b1(η(b0)− η(a0))− (b0 − a0)η(a1) + σ2(Φ(b0)− Φ(a0))

if a1 > a0 and b1 < b0

I.p(R|x) = (b1 − a1)η(a0)− a0(η(b1)− η(a1))− σ2(Φ(b1)− Φ(a1))

I.p(S|x) = b0(η(b1)− η(a1))− (b1 − a1)η(a0) + σ2(Φ(b1)− Φ(a1))

A.2.1 Proof for τ(x)

With αab ∼ U [a, b] and ε ∼ N (0, σ), the law habσ of αab + ε is:

habσ(z) =

∫ +∞

−∞

1(a < y < b)

b− a
φσ(z − y)dy

=
1

b− a

∫ b

a

φσ(z − y)dy

=
Φσ(z − b)− Φσ(z − a)

b− a
Then we have

p(Y = 1|T = 1, x) =

∫ +∞

0

ha1b1σ(y)dy =
η(b1)− η(a1)

b1 − a1

and similarly

p(Y = 1|T = 0, x) =
η(b0)− η(a0)

b0 − a0

A.2.2 Sketch of proof for p(R|x)

p(R|x) = P (αa1b1 + ε > 0) & P (αa0b0 + ε < 0)

= P (αa0b0 < −ε < αa1b1)

= P (αa0b0 < ε < αa1b1) by symmetry

=

∫
m,n

P (m < ε < n)P (αb0a0 = m,αb1a1 = n) dm dn

=

∫
m,n

P (m < ε < n)P (αb0a0 = m)P (αb1a1 = n) dm dn

=

∫ m=b0

m=a0

∫ n=b1

n=a1

P (m < ε < n)

(b1 − a1)(b0 − a0)
dm dn

Since P (m < ε < n) = 0 if m > n and Φσ(n)− Φσ(m) otherwise, we end up with

I.p(R|x) =

∫
D

(Φσ(n)− Φσ(m)) dm dn

with D = {(m,n),m ∈ [a1, b1], n ∈ [a0, b0], n > m}

Depending on the values of a0, a1, b0, a1, D can be a triangle, a rectangle or a trapezium. One has
to consider separately all cases and proceed with further decomposition of the integral.
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A.2.3 Sketch of proof for p(S|x)

Similarly, we can show that

I.p(S|x) =

∫
D

min(Φσ(m),Φσ(n)) dm dn (41)

and again all cases have to be considered separately.

Response-based DGP 3. Y ∼ B(1, f(x, T ))

τ(x) = f(x, 1)− f(x, 0)

p(R|x) = f(x, 1)(1− f(x, 0))

p(S|x) = f(x, 1)f(x, 0)

B Additional technical details

B.1 Neural networks

Tools. Neural networks were developed with the Keras library [35].

Parameter settings . All neural networks use the following fixed settings:

• optimizer: Adam

• max number of epochs: 300

• batch size: 256 for T-NN and 128 for all the others

• the activation function of hidden layers is relu

• neuron parameters are initialized using the RandomNormal procedure of TensorFlow

The optimal learning rate was looked for within the [0.0001, 0.002] range.
The regularization coefficient of DUR1 was looked for within the [0, 1] range

Early stop of training We monitor the evolution of the loss on the validation set and interrupt
the training process if the average of this loss over the last 5 epochs has not improved for 30 epochs.

B.2 Uplift random forests

We forked the library scikit-learn [36] and implemented uplift random forests using the same Cython
optimization techniques already used for regular random forests. We achieved similar runtimes. We
set the following ranges for random forests hyperparameters:

• depth : [7, 23]

• number of trees : [40, 150]

• minimum number of samples per leaf : 100
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B.3 Early stop in 5-fold cross validation

When looking for the best hyperparameters of a model through 5-fold cross-validation, we try to
detect an underperforming model early and save time by not training it on the 5 folds.

When optimizing a model with respect to L̂∗ or the AUUC, we keep track of the best current
performance Kcurrent best that has been achieved for all sets of hyperparameters tested so far. When
training a model with a new set of hyperparameters, after the 3rd and 4th fold, we compute its
ongoing average performance Kon the fly as well as its standard deviation son the fly among those

first 3 or 4 folds. If the metric considered is L̂∗ and if Kcurrent best < Kon the fly − son the fly, then
we consider that the current set of hyperparameters is unlikely to achieve a better performance than
the current best and we do not train the model on the remaining folds. Similarly, if the metric is
the AUUC, we check whether Kcurrent best > Kon the fly + son the fly
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